Chapter5 Combinatonal Logic

Chapter5 Combinatonal Logic 组合逻辑

5.1 Basic Combinational Logic

AND-OR Logic

An AND-OR circuit directly implements an SOP expression, assuming the complements (if any) of the variables are available.

image-20250505220830110

AND-OR Invert Logic

When the output of an AND-OR circuit is complemented (inverted), it results in an AND-OR-Invert circuit.

image-20250505221555660 $$ X = \overline{AB + CD} = (\overline{A} + \overline{B})(\overline{C} + \overline{D}) $$

Exclusive-OR (XOR) Logic

image-20250505221613929 $$ X = A \oplus B = A\overline{B} + \overline{A}B $$

Exclusive-NOR (XNOR) Logic

X=AB=AB+ABX = \overline{A \oplus B} = A B + \overline{A}\cdot\overline{B}

image-20250505221829446

Implementing Combinational Logic

  1. 会从逻辑表达式画逻辑电路图就行
  2. 会从真值表画逻辑电路图就行
  3. 就是些废话,跳过

The Universal Property of Extend Gates

The NAND Gate as a Universal Logic Element

The NAND gate can be used to produce the NOT, AND, OR, and NOR operations.

image-20250505232137431

The NAND gate used as an OR gate

image-20250505232221159

The NAND gate used as an NOR gate

image-20250505232405118

The NOR Gate as a Universal Logic Element

The NOR gate can be used to produce the NOT, OR, AND, and NAND operations.

image-20250505232531392

The NOR gate used as an AND gate

image-20250505233639420

The NOR gate used as an NAND gate

image-20250505233703962

Combinational Logic Using Extend Gates

该部分要求

  • 用前面给出的那些基本结构的组合来构建复杂逻辑就足够了
  • 注意:分析这类逻辑电路时,有个技巧:Bubbles cancel
    • 两个圆圈表示两次取反,由于A=A\overline{\overline{A}} = A,经过两次取反的信号就是原来的信号,相当于没变。分析的时候,为了简化复杂的电路,可以直接把成对的Bubble直接去掉。

两种常见的逻辑

NAND 实现 SOP 的逻辑

使用DeMorgan律 AB=A+B\overline{AB} = \overline{A} + \overline{B}

X=(AB)(CD)=(A+B)(C+D)=(A+B)+(C+D)=AB+CD=AB+CD\begin{align} X = \overline{(\overline{AB})(\overline{CD})} = \overline{(\overline{A} + B)(\overline{C} + D)} = \overline{(\overline{A} + B)} + \overline{(\overline{C} + D)} = \overline{\overline{AB}} + \overline{\overline{CD}} = AB + CD \end{align}

image-20250505235034741

一种更高效的分析方法:

image-20250505235106761

NOR 实现 POS 的逻辑

使用DeMorgan律 A+B=AB\overline{A + B} = \overline{A} \cdot \overline{B}

X=A+B+C+D=(A+B)(C+D)=(A+B)(C+D)X = \overline{A + B + C + D} = \overline{(A + B)(C + D)} = (A + B)(C + D)

image-20250505235850977 image-20250505235906785
0%