Chapter6 Functions of Combinational Logic

Chapter6 Functions of Combinational Logic

6.1 Adders

The Half Adder(半加器)

The half-adder accepts two binary digits on its inputs and produces two binary digits on outputs, a sum bit and a carry bit.

{=AB+AB=ABCout=AB\begin{cases} \sum = \overline{A}B + A\overline{B} = A \oplus B \\ C_{out} = AB \end{cases}

alt text
输入 A 输入 B Σ\Sigma (Sum) 进位 (Carry)
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

The Full Adder(全加器)

The full-adder accepts two inputs and input carry and generates a sum output and an output carry.

使用逻辑门实现全加器

image-20250506002127845 $$ \begin{align} \sum &= \overline{A}BC_{in} + \overline{A}\overline{B}C_{in} + A\overline{B}\overline{C}_{in} + ABC_{in} \\ &= \overline{A}(BC_{in} + \overline{B}C_{in}) + A(\overline{B}\overline{C}_{in} + BC_{in}) \\ &= \overline{A}(B \oplus C_{in}) + A(\overline{B \oplus C_{in}}) = A\oplus B\oplus C_{in} \end{align} $$ image-20250506002211949alt text $$ C_{out} = \overline{A}BC_{in} + A\overline{B}C_{in} + A\overline{B}\overline{C}_{in} + ABC_{in} = (\overline{A}B + A\overline{B})C_{in} + AB = (A \oplus B)C_{in} + AB $$ **总结** $$ \begin{cases} \sum = A\oplus B\oplus C_{in} \\ C_{out} = (A \oplus B)C_{in} + AB \end{cases} $$

用两个半加器实现全加器

image-20250506002437490

Parallel Binary Adders

  • Two or more full-adders are connected to form parallel binary adders.
  • A single full-adder is capable of adding two 1-bit binary numbers and an input carry. To add binary numbers with more than one bit, additional full-adders must be used.
  • The carry output of each adder is connected to the carry input of the next higher-order adder.
  • In terms of the method used to handle carries in a parallel adder, there are two types: the ripple carry adder and the carry look-ahead adder.
image-20250506131315219

Example: 4-bit parallel adders

A group of four bits is called a nibble(半字节). A basic 4-bit parallel adder is implemented with four full-adders.

image-20250506131557809 image-20250506131612679

Method 1: Ripple Carry Adder (串行进位加法器) RCA

  • Ripple Carry Adder is one in which the carry output of each full-adder is connected to the carry input of the next higher-order stage.
  • The sum and the output carry of any stage cannot produced until the input carry occurs; this causes a time delay in the addition process.
  • 完整的NN位串行进位加法器加法需要 O(N)O(N) 的时间
image-20250506133011905

Method 2: Look-Ahead Carry Adder (超前进位加法器) CLA

The look-ahead carry adder anticipates the output carry based on the input bits, and produces the output carry by either carry generation or carry propagation.

  • 一个N位的CLA可以在 O(1)O(1) 的时间内计算完N位的加法
  • CLA在位数较大的情况下,逻辑电路复杂程度会大幅增加。实际使用的时候,一般不会把一个位数很大的加法器直接以CLA的形式展开,而是以2-bit,4-bit或8-bit的CLA作为一个单元,然后把各个单元作为一个整体再用CLA的方式连起来,这样可以在计算速度和电路复杂度之间做一个权衡。这种结构的总体时间复杂度为 O(logN)O(\log N)
基本定义和概念
  • 进位生成 (Carry Generation) GiG_i: 当输入 AiA_iBiB_i 都为 1 时,无论低位的进位 CIiCI_i 是多少,本位都会产生一个向高位的进位。
    Gi=AiBiG_i = A_i B_i
  • 进位传播 (Carry Propagation) PiP_i: 当输入 AiA_iBiB_i 中有一个为 1 时 (即 Ai+Bi=1A_i+B_i=1 ),本位会将来自低位的进位 CIiCI_i 传递到高位。
    Pi=Ai+BiP_i = A_i + B_i
    • 注意:在某些设计中,进位传播也可能定义为 Pi=AiBiP_i = A_i \oplus B_i (异或)。PPT中的定义是 Pi=Ai+BiP_i = A_i + B_i (或)。我们将按照PPT中的定义进行推导。
image-20250506140258989

进位项推导

全加器第 ii 位的进位输出 COiCO_i (Carry Out) 取决于两种情况:

  • 本位自己产生了进位 ( Gi=1G_i = 1 )。
  • 本位将来自低位的进位 CIiCI_i (Carry In) 传播了上去 ( Pi=1P_i = 1CIi=1CI_i = 1 )。

所以,第 ii 位的进位输出逻辑表达式为:

COi=AiBi+(Ai+Bi)CIiCO_i = A_i B_i + (A_i + B_i) CI_i

使用 GiG_iPiP_i 代替,得到:

COi=Gi+PiCIiCO_i = G_i + P_i CI_i

这里的 CIiCI_i 是第 ii 位的进位输入,它实际上就是第 i1i-1 位的进位输出 COi1CO_{i-1}。所以:CIi=COi1CI_i = CO_{i-1}

然后进行迭代表达式循环展开,直到表达式中的所有逻辑量都是由输入直接决定的

COi=Gi+PiCIi=Gi+Pi(Gi1+Pi1CIi1)=Gi+PiGi1+PiPi1CIi1=Gi+PiGi1+PiPi1(Gi2+Pi2CIi2)=Gi+PiGi1+PiPi1Gi2+PiPi1Pi2CIi2==Gi+PiGi1+PiPi1Gi2++PiPi1P2G1+PiPi1P2P1CI1\begin{align} CO_i &= G_i + P_i CI_i \\ &= G_i + P_i (G_{i-1} + P_{i-1} CI_{i-1}) \\ &= G_i + P_i G_{i-1} + P_i P_{i-1} CI_{i-1} \\ &= G_i + P_i G_{i-1} + P_i P_{i-1} (G_{i-2} + P_{i-2} CI_{i-2}) \\ &= G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + P_i P_{i-1} P_{i-2} CI_{i-2} \\ &= \cdots \\ &= G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + \dots + P_i P_{i-1} \dots P_2 G_1 + P_i P_{i-1} \dots P_2 P_1 CI_1 \end{align}

这里的 CI1CI_1是从更低位过来的输入

注意区分题目的最低位是0还是1,这个有些题目可能是不一样的。如果最低位是0的话,那么表达式就变成

COi=Gi+PiGi1+PiPi1Gi2++PiPi1P1G0+PiPi1P1P0CI0CO_i = G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + \dots + P_i P_{i-1} \dots P_1 G_0 + P_i P_{i-1} \dots P_1 P_0 CI_0

image-20250506140330169

以这个4-bit CLA为例(最低位从1开始):

CO1=G1+P1CI1CO2=G2+P2G1+P2P1CI1CO3=G3+P3G2+P3P2G1+P3P2P1CI1CO4=G4+P4G3+P4P3G2+P4P3P2G1+P4P3P2P1CI1\begin{align} CO_1 &= G_1 + P_1 CI_1 \\ CO_2 &= G_2 + P_2 G_1 + P_2 P_1 CI_1 \\ CO_3 &= G_3 + P_3G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 CI_1 \\ CO_4 &= G_4 + P_4G_3 + P_4P_3G_2 + P_4 P_3 P_2 G_1 + P_4 P_3 P_2 P_1 CI_1 \end{align}

集成的加法器芯片

  • 会用就行,知道管脚定义,会识别管脚编号,会连线扩展即可
image-20250506142321450

Adders Expansion

image-20250506142351697 image-20250506142410823

6.2 Comparators

  • The basic function of a comparator is to compare the magnitudes of two binary quantities to determine the relationship of those quantities.
  • In its simplest form, a comparator determines whether two numbers are equal.

Basic Comparator

1-bit comparator

image-20250506142608048

2-bit comparator

image-20250506142642250

Advanced Comparators

  • In addition to the equality output, many comparators provide additional outputs that indicates which of the two numbers is the larger.
  • That is, there is an output that indicates when number A is greater than number B (A > B) and an output that indicates when number A is less than number B (A < B).

One-bit Comparator

image-20250506143440107

4-bit Comparator

image-20250506143629925
Comparison Rules
  • Begin from MSB
  • If A3>B3A_3 > B_3, then A>BA > B
  • If A3<B3A_3 < B_3, then A<BA < B
  • If A3=B3A_3 = B_3, then compare the lower bits
  • Repeat this operation to LSB
Bit Comparison Logics
  1. Ai>BiA_i > B_i: Ai=1,Bi=0;AiBi=1A_i = 1, B_i = 0; A_i \cdot \overline{B_i} = 1
  2. Ai<BiA_i < B_i: Ai=0,Bi=1;AiBi=1A_i = 0, B_i = 1; \overline{A_i} \cdot B_i = 1
  3. Ai=BiA_i = B_i: AiBi=1\overline{A_i \oplus B_i} = 1 or AiBi=1A_i \odot B_i = 1
Truth Table
image-20250506144849005
Logic Expression

Y(A<B)=Aˉ3B3+(A3B3)Aˉ2B2+(A3B3)(A2B2)Aˉ1B1+(A3B3)(A2B2)(A1B1)Aˉ0B0+(A3B3)(A2B2)(A1B1)(A0B0)I(A<B)\begin{align} Y_{(A<B)} &= \bar{A}_3 B_3 + (A_3 \odot B_3)\bar{A}_2 B_2 + (A_3 \odot B_3)(A_2 \odot B_2)\bar{A}_1 B_1 \\ &+ (A_3 \odot B_3)(A_2 \odot B_2)(A_1 \odot B_1)\bar{A}_0 B_0 \\ &+ (A_3 \odot B_3)(A_2 \odot B_2)(A_1 \odot B_1)(A_0 \odot B_0)I_{(A<B)} \end{align}

Y(A=B)=(A3B3)(A2B2)(A1B1)(A0B0)I(A=B)Y_{(A=B)} = (A_3 \odot B_3)(A_2 \odot B_2)(A_1 \odot B_1)(A_0 \odot B_0)I_{(A=B)}

Y(A>B)=Y(A<B)+Y(A=B)Y_{(A>B)} = Y_{(A<B)} + Y_{(A=B)}

Integrated Comparator

image-20250506144936881

Comparator Expansion

image-20250506145009622

6.3 Decoders

  • The Basic function of a decoder is to detect the presence of a specified combination of bits (code) on its inputs and to indicate the presence of that code by a specified output level.
  • In its generation form, a decoder has n input lines to handle n bits and from one to 2n2^n output lines to indicate the presence of one or more n-bit combinations.

The Basic Binary Decoder

  • Implemented with NOT Gates & AND Gate
image-20250506145820869

The 4-Bit Decoder (4-Line-to-16-Line Decoder)

  • In order to decode all possible combinations of four bits, sixteen decoding gates are required.
  • The 4-bit decoder is also called a 1-of-16 decoder because for any given code on the inputs, one of the sixteen outputs is activated.
  • Active-LOW (低电平有效) output is commonly used in 4-bit decoders
    • An input/output pin marked with a bubble often means Active-LOW (低电平有效) input/output

Truth Table (Active-LOW Version)

image-20250506150125921

Implementation

  • If an active-LOW output is required for each decoded number, the entire decoder can be implemented with NAND gates and inverters.
  • In order to decode each of the sixteen binary codes, sixteen NAND gates are required (AND gates can be used to produce active HIGH outputs).

Logic Expression

For a 4-line-to-16-line Decoder with active-LOW output:

Yi=yi=miY_i = \overline{y_i} = \overline{m_i}

Integrated 4-Bit Decoder

Yi=yi=(CS1×CS2)×mi=(CS1+CS2)+miY_i = \overline{y}_i = \overline{\left(\overline{\overline{CS_1}} \times \overline{\overline{CS_2}}\right) \times m_i} = \left(\overline{CS_1} + \overline{CS_2}\right) + \overline{m}_i

image-20250506151305170

Decoder Expansion

image-20250506152459124

The BCD-to-Decimal Decoder

The BCD-to-Decimal Decoder converts each BCD code (8421 code) into one of ten possible decimal digit indications, usually called 4-line-to-10-line decoder or 1-of-10 decoder.

Truth Table

image-20250506152729164

Logic Symbol & Diagram

image-20250506152815099

Logic Expression

Yi=mi\overline{Y_i} = \overline{m_i}

Waveform Example

image-20250506153405862

The BCD-to-7-Segement Decoder

image-20250506153456958
  • Common cathode: 共阴极
    • 输入高电平的LED段亮,输入低电平的LED段暗
  • Common anode: 共阳极
    • 输入低电平的LED段亮,输入高电平的LED段暗

Truth Table

image-20250506154952253

Logic Expression

  • 根据真值表,为每一个输出画卡诺图

    • 所以写逻辑表达式之前先画真值表
    • 每个输出都对应4个输入,所以是4变量卡诺图
  • 通过卡诺图最大分组,确定每个输出的最简逻辑表达式

  • 写出表达式,自然就知道怎么用逻辑电路实现了

image-20250506153906086 image-20250506153921489

Integrated BCD-7-Segment Decoder

74LS47 is an MSI device that decode a BCD code and drives a 7-segment display.

  • The BCD inputs D, C, B, and A are active-HIGH.
  • The segment outputs a – g are active-LOW

Input pins definition

  • LT\overline{\text{LT}} = Lamp Test . When active, all of the 7 segments are turned on. Used to verify no segments are burned out.
    • 人话:灯测试,全亮
  • RBI\overline{\text{RBI}} = Ripple Blanking Input. When active, all of the 7 segments are turned off if a zero code is on the BCD inputs and RBO will be active.
    • 脉冲消隐输入/行波灭零输入
    • 工作方式:在一个多位数的显示系统中(比如 4 位显示 “0025”),我们通常不希望显示前面的 “00”。RBI 用于接收来自更高位解码器的“是否需要消隐”的信号。
      • 如果 RBI 输入为高电平(通常表示更高位不是零,或者这是最高位且不需要消隐),那么当前这个解码器即使 BCD 输入为 0,也会正常显示 “0”。
      • 如果 RBI 输入为低电平(通常表示更高位是零且已经被消隐了),并且当前这个解码器的 BCD 输入也是 0 (0000),那么这个解码器也会被消隐(不显示任何内容),并通过 RBO 输出一个低电平信号给下一位。
  • BI/RBO\overline{BI}/\overline{RBO} = Blanking Input/ Ripple Blanking Output. When active, all of the 7 segments are turned off.
    • 消隐输入 / 脉冲消隐输出
    • 作为 BI (Blanking Input - 消隐输入): 当这个管脚被强制设置为低电平(通常情况下)时,它会无条件地关闭所有七段输出(a-g),使得显示器熄灭(Blanking),无论 BCD 输入或 LT 输入状态如何(但有时 LT 会覆盖 BI)。这可以用于完全关闭某个数位的显示。
    • 作为 RBO (Ripple Blanking Output - 脉冲消隐输出 / 行波灭零输出): 这个输出状态取决于 RBI 输入和当前的 BCD 输入值。
      • 条件: 只有当 RBI 输入为低电平 并且 当前解码器的 BCD 输入为 0 (0000) 时,RBO 输出才会变为低电平
      • 其他情况: 在所有其他情况下(即 RBI 为高电平,或者 BCD 输入不是 0),RBO 输出将保持高电平
image-20250506154807061 image-20250506154821384

Leading Zero Suppression (前导零抑制)

  • 目标: 消除数字整数部分开头多余的零。例如,将 “0075” 显示为 " 75"。
  • 方向: 消隐信号从最高位 (MSD)最低位 (LSD) 传递。
  • 接法:
    1. 最高位 (MSD) 解码器:
      • 将其 RBI (Ripple Blanking Input - 行波消隐输入) 引脚接低电平 (GND)。这使得最高位如果其BCD输入为0,它自身就会被消隐。
    2. 中间各位解码器:
      • 前一位(更高位)解码器的 RBO (Ripple Blanking Output) 引脚连接到当前位解码器的 RBI 引脚
      • 这个链式连接从MSD的下一位一直持续到LSD的前一位。
    3. 最低位 (LSD) 解码器:
      • 如果希望数字 “0000” 显示为一个 “0”: 将LSD解码器的 RBI 引脚接高电平 (VCC) 或不接。这样即使更高位都因是0而被消隐,LSD也不会被消隐,从而显示出0。
      • 如果希望数字 “0000” 完全显示为空白: 则LSD的RBI也按上述链式连接接入(即连接到其前一位的RBO)。
      • 最低位(LSD)通常RBO通常不接
image-20250506162553367

Trailing Zero Suppression (后续零抑制 / 末尾零抑制)

  • 目标: 通常用于消除数字小数部分末尾多余的零。例如,将 “12.500” 显示为 “12.5”。
  • 方向: 消隐信号从小数部分的最低位 (LSD of fractional part)小数部分的最高位 (MSD of fractional part, 即小数点后的第一位) 传递。
  • 接法 (仅针对小数部分):
    1. 小数部分的最低位解码器:
      • 将其 RBI 引脚接低电平 (GND)。这使得小数部分的最低位如果其BCD输入为0,它自身就会被消隐。
    2. 小数部分的中间各位解码器 (从低位向高位):
      • 后一位(更低位)解码器的 RBO 引脚连接到当前位解码器的 RBI 引脚
      • 这个链式连接从小数部分LSD的上一位一直持续到小数点后的第一位。
    3. 小数点后第一位解码器 (小数部分的最高位):
      • 如果希望小数部分0000显示成一个0,那小数部分的最高位可以接高电平(VCC)或不接
      • 如果希望小数部分0000完全显示成空白,那么其RBI也按上述链式连接接入(即连接到后一位的RBO),就其RBI会接收来自小数部分下一位(更低位)的RBO信号。
  • 整数部分: 整数部分的解码器通常不参与后续零抑制的RBI/RBO链,它们可能采用前导零抑制的接法,或者不进行任何消隐。

实际用的时候不太用这些原始方法做零抑制的,用MCU编写程序处理零抑制和小数点位置,更灵活和方便。

image-20250506162627906

6.4 Encoders

  • An encoder is a combinational logic circuit that essentially performs a “reverse” decoder function.
  • An encoder accepts an active level on one of its inputs representing a digit, such as a decimal or octal digit, and converts it to a coded output, such as BCD or binary. Encoders can also be devised to encode various symbols and alphabetic characters. The process of converting from familiar symbols or number to a coded format is called encoding.

The Decimal-to-BCD Encoder

The decimal-to-BCD encoder has ten inputs – one for each decimal digit and four outputs corresponding to the BCD code.

image-20250506163034747

Simple Encoder

This kind of encoder works only when one input is active (HIGH) at a time, otherwise it will result in incorrect outputs.

Priority Encoder

The priority function means that the encoder will produce a BCD output corresponding to the highest-order digit input that is active and ignore any other lower-order active inputs.

8-Line-to-3-line priority encoder

74F148 is a 8-Line-to-3-line priority encoder that has eight active-LOW inputs and three active-LOW binary outputs. The device can be used for converting octal inputs to a 3-bit binary code.

  • All inputs and outputs are active LOW.
  • EI\overline{\text{EI}} = Enable Input. When inactive, all outputs are deactivated.
  • EO\overline{\text{EO}} = Enable output. EO is active if EI is active and none of the inputs is active.
  • GS\overline{\text{GS}} = Gate Strobe. GS is active if EI is active and any of the inputs is active.
image-20250506172026098
Truth Table
image-20250506172239190
Logic Expression

{A2=(I4+I5+I6+I7)EIA1=(I2I4I5+I3I4I5+I6+I7)EIA0=(I1I2I4I6+I3I4I6+I5I6+I7)EIEO=I0I1I2I3I4I5I6I7(EI)GS=(I0+I1+I2+I3+I4+I5+I6+I7)EI\begin{cases} \overline{A_2} = \overline{(I_4 + I_5 + I_6 + I_7) \cdot EI} \\ \overline{A_1} = \overline{(I_2 \overline{I_4} \cdot \overline{I_5} + I_3 \overline{I_4} \cdot \overline{I_5} + I_6 + I_7) \cdot EI} \\ \overline{A_0} = \overline{(I_1 \overline{I_2} \cdot \overline{I_4} \cdot \overline{I_6} + I_3 \overline{I_4} \cdot \overline{I_6} + I_5 \overline{I_6} + I_7) \cdot EI} \\ \overline{EO} = \overline{\overline{I_0} \cdot \overline{I_1} \cdot \overline{I_2} \cdot \overline{I_3} \cdot \overline{I_4} \cdot \overline{I_5} \cdot \overline{I_6} \cdot \overline{I_7} \cdot (EI)} \\ \overline{GS} = \overline{(I_0 + I_1 + I_2 + I_3 + I_4 + I_5 + I_6 + I_7) \cdot EI} \end{cases}

Logic Diagram
image-20250506172212134
Expansion: 16-4 Priority Encoder
image-20250506172357155

The Decimal-to-BCD Priority Encoder

The Decimal-to-BCD priority encoder means that the encoder will produce a BCD output corresponding to the highest-order decimal digit input that is active and ignore any other lower-order active inputs.

  • 74HC147 is a priority encoder with active-LOW inputs (0) for decimal digits 1 through 9, and active-LOW BCD outputs. A BCD zero output is represented when none of the inputs is active.
image-20250506172937368

Application example: Simplified keyboard encoder

image-20250506173042646

6.5 Code Converters

A code converter converts one code to another.

BCD-Binary Conversion

  1. Determine the value or weight of each bit in the BCD number, and represent it by a binary number;
  2. Add all the weights that the corresponding bits are 1s;
  3. The result of this addition is the binary equivalent of the BCD number.

Example

Convert the BCD numbers 0010 0111 to binary

  1. The weights of each bit as follows:
image-20250506192204394
  1. Sum of the weights:
image-20250506192239437

Integrated Conversion Chip

一个有趣的现象:A0A_0 不需要处理,因为BCD码的LSB和对应二进制的LSB必然是一致的(想一想就能明白)

image-20250506192712258

Binary-to-Gray Conversion

  • XOR gates can be used for the conversions
  • 记住:如果要画二进制/格雷码互转的逻辑电路图,从MSB开始画
image-20250506193629604

Gray-to-Binary Conversion

  • XOR gates can be used for the conversions
  • 记住:如果要画二进制/格雷码互转的逻辑电路图,从MSB开始画
  • 注意:处理一位Gray Code的XOR Gate的输入连的是这一位的Gray Code和高一位的Binary Code转换结果,MSB直接输出,与Binary转Gray是不同的,别搞混了
image-20250506193942929

6.6 Multiplexers

A multiplexer (MUX) is a device that allows digital information from several sources to be routed onto a single line for transmission over that line to a common destination.

4-bit data selector

image-20250506194459925

Logic Expression

Y=S1S0D0+S1S0D1+S1S0D2+S1S0D3=m0D0+m1D1+m2D2+m3D3Y = \overline{S_1} \cdot\overline{S_0}D_0 + \overline{S_1}S_0D_1 + S_1\overline{S_0}D_2 + S_1S_0D_3 = m_0D_0 + m_1D_1 + m_2D_2 + m_3D_3

Logic Diagram

image-20250506194752861 image-20250506194831641

Integrated Multiplexer

image-20250506194918788 image-20250506194937738

Expansion

image-20250506195040427

例题

image-20250506200157638 image-20250506200216166
  • 一个技巧:“降维卡诺图“。具体来说就是把三个变量作为选通用的变量(作为卡诺图的变量),剩下的一个变量作为数据输入当作常数写进卡诺图的单元格中,专门用来解下面这种题
image-20250506200406958 image-20250506200421341

6.7 Demultiplexers

A demultiplexer (DEMUX) basically reserves the multiplexing function. It takes data from one line and distribute them to a given number of output lines. For this reason, the demultiplexer is also known as a data distributor.

image-20250506200624323 image-20250506200646838

Logic Expression

Di=miD=mi+DD_i = \overline{m_i \overline{D}} = \overline{m_i} + D

6.8 Parity Generators/Checkers

  • Parity method uses a parity bit as a means for bit error detection.
  • A parity bit is attached to a group of bits to make the total number of 1s in a group always even or always odd.
  • Basic Parity Logic:
    • The sum of an even number of 1s is always 0
    • the sum of odd number of 1s is always 1

Basic Structure

  • Summing by XOR Gates
image-20250506201242511

Integrated Parity Generator/Checker

image-20250506201432492

Parity Checker: When the device is used as an even parity checker, the number of input bits that are highs should always be Even; and when a parity error occurs, the Even output goes LOW and the Odd goes HIGH.

Parity Generator:

  • For even parity generator, take Odd output as the parity bit;
  • For odd parity generator, take Even output as the parity bit.
0%