数理方法第三章:积分变换法

Chapter3 积分变换法

基础知识

欧拉公式

eiθ=cosθ+isinθsinθ=eiθeiθ2icosθ=eiθ+eiθ2e^{i\theta} = \cos \theta + i \sin \theta \\ \sin \theta = \dfrac{e^{i \theta} - e^{-i \theta}}{2i} \quad \cos \theta = \dfrac{e^{i \theta} + e^{-i \theta}}{2}

双曲正弦/余弦

sinhθ=eθeθ2coshθ=eθ+eθ2ddθsinhθ=coshθddθcoshθ=sinhθ\sinh \theta = \frac{e^{\theta} - e^{-\theta}}{2} \quad \cosh \theta = \frac{e^{\theta} + e^{-\theta}}{2} \\ \frac{d}{d\theta} \sinh \theta = \cosh \theta \quad \frac{d}{d\theta} \cosh \theta = \sinh \theta

双曲函数的恒等式

cosh2θsinh2θ=1\cosh^2 \theta - \sinh^2 \theta = 1

高斯积分

ex2dx=πeax2dx=πa\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi} \\ \int_{-\infty}^{\infty} e^{-ax^2} \, dx = \sqrt{\dfrac{\pi}{a}}

一阶常微分方程的解

齐次

y+p(x)y=0y' + p(x)y = 0

解为

y=Cep(x)dxy = C e^{-\int p(x) dx}

非齐次

y+p(x)y=q(x)y' + p(x)y = q(x)

解为(使用常数变易法得到,不过建议直接记结论)

y=ep(x)dx(q(x)ep(x)dxdx+C)y = e^{-\int p(x) dx} \left( \int q(x) e^{\int p(x) dx} dx + C \right)

实际用的时候积分起点可以随便选一个计算方便的(比如0)

三角函数公式

积化和差

sinαcosβ=12[sin(α+β)+sin(αβ)]cosαsinβ=12[sin(α+β)sin(αβ)]cosαcosβ=12[cos(α+β)+cos(αβ)]sinαsinβ=12[cos(α+β)cos(αβ)]\sin \alpha \cos \beta = \frac{1}{2} [\sin (\alpha + \beta) + \sin (\alpha - \beta)] \\ \cos \alpha \sin \beta = \frac{1}{2} [\sin (\alpha + \beta) - \sin (\alpha - \beta)] \\ \cos \alpha \cos \beta = \frac{1}{2} [\cos (\alpha + \beta) + \cos (\alpha - \beta)] \\ \sin \alpha \sin \beta = - \frac{1}{2} [\cos (\alpha + \beta) - \cos (\alpha - \beta)]

和差化积

sinα+sinβ=2sin(α+β2)cos(αβ2)sinαsinβ=2cos(α+β2)sin(αβ2)cosα+cosβ=2cos(α+β2)cos(αβ2)cosαcosβ=2sin(α+β2)sin(αβ2)\sin \alpha + \sin \beta = 2 \sin \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) \\ \sin \alpha - \sin \beta = 2 \cos \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\alpha - \beta}{2} \right) \\ \cos \alpha + \cos \beta = 2 \cos \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) \\ \cos \alpha - \cos \beta = -2 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\alpha - \beta}{2} \right)

Fourier变换

对傅里叶级数取极限,可以得到

f(t)=12π[f(τ)eiωτdτ]eiωtdωf(t) = \dfrac{1}{2\pi} \int_{-\infty}^{\infty} [\int_{-\infty}^{\infty} f(\tau) e^{-i\omega \tau} d\tau] e^{i\omega t} d\omega

F1[F[f(t)]]={f(t)tf(t)连续点f(t+)+f(t)2tf(t)第一类间断点\mathscr{F}^{-1}[\mathscr{F}[f(t)]] = \begin{cases} f(t) & t为f(t)连续点 \\ \dfrac{f(t^+) + f(t^-)}{2} & t为f(t)第一类间断点 \end{cases}

Fourier变换

F[f(t)]=f(t)eiωtdt=F(ω),<ω<\mathscr{F} [f(t)] = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt = F(\omega) , -\infty<\omega<\infty

Fourier逆变换

F1[F(ω)]=12πF(ω)eiωtdω=f(t)\mathscr{F}^{-1} [F(\omega)] = \dfrac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega = f(t)


例题

  1. 求函数f(t)=eβtf(t) = e^{-\beta \lvert t \rvert}的Fourier积分公式

f(t)=eβteiωtdt=eβt(cosωtisinωt)dt=20eβtcosωtdt=2β0cosωtd(eβt)=2β[cosωteβt0+ω0eβtsinωtdt]=2β[1ωβ0sinωtd(eβt)]=2β[1ωβ[sinωteβt00eβtωcosωtdt]]=2β[1ωβ(ω)0eβtcosωtdt]=2β2[βω20eβtcosωtdt]=20eβtcosωtdt    20eβtcosωtdt=2ββ2+ω2=F(ω)f(t) = \int_{-\infty}^{\infty} e^{-\beta \lvert t \rvert} e^{i\omega t} dt = \int_{-\infty}^{\infty} e^{-\beta \lvert t \rvert} (\cos \omega t - i \sin \omega t) \, dt \\ = 2 \int_{0}^{\infty} e^{-\beta t} \cos \omega t \, dt = -\dfrac{2}{\beta} \int_{0}^{\infty} \cos \omega t \, d(e^{-\beta t}) \\ = -\dfrac{2}{\beta}[\cos \omega t e^{-\beta t}\rvert_0^{\infty} + \omega \int_{0}^{\infty} e^{-\beta t} sin\omega t \, dt] \\ = - \dfrac{2}{\beta} [-1 - \dfrac{\omega}{\beta} \int_{0}^\infty \sin \omega t \, d(e^{-\beta t})] \\ =-\dfrac{2}{\beta} [-1 - \dfrac{\omega}{\beta}[\sin \omega t e^{-\beta t} |^{\infty}_0 - \int_{0}^{\infty} e^{-\beta t} \omega \cos \omega t dt]] \\ =-\dfrac{2}{\beta} [-1 - \dfrac{\omega}{\beta}(-\omega) \int_0^{\infty} e^{-\beta t} \cos \omega t \, dt] = -\dfrac{2}{\beta^2}[\beta - \omega^2 \int_{0}^{\infty} e^{-\beta t} \cos \omega t \, dt] \\ = 2 \int_{0}^{\infty} e^{-\beta t} \cos \omega t \, dt \\ \implies 2 \int_{0}^{\infty} e^{-\beta t} \cos \omega t \, dt = \dfrac{2\beta}{\beta^2 + \omega^2} = F(\omega)

由此可以得到一个常用积分公式

f(t)=F(ω)eiωtdω=1π02β(cosωt)β2+ω2dω    0cosωtβ2+ω2dω=π2βeβtf(t) = \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega = \dfrac{1}{\pi} \int_{0}^{\infty} \dfrac{2\beta(\cos \omega t)}{\beta^2 + \omega^2} d\omega \\ \implies \int_{0}^{\infty} \dfrac{\cos \omega t}{\beta^2 + \omega^2} \, d\omega = \dfrac{\pi}{2 \beta} e^{-\beta \lvert t \rvert}


  1. 求单边指数函数

    f(t)={eβtt>00t<0f(t) = \begin{cases} e^{-\beta t}& t>0 \\ 0 & t<0 \end{cases}

    的Fourier变换公式,并计算积分

    0+βcosωt+ωsinωtβ2+ω2dω\int_{0}^{+\infty} \dfrac{\beta \cos \omega t +\omega \sin \omega t}{\beta^2 + \omega^2} d\omega

F[f(t)]=f(t)eiωtdt=0eβteiωtdt=0e(β+iω)tdt=1β+iωe(β+iω)t0=1β+iω=βiωβ2+ω2\mathscr{F}[f(t)] = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt = \int_{0}^{\infty} e^{\beta t} e^{-i\omega t} dt \\ = \int_{0}^{\infty} e^{-(\beta + i\omega)t} dt = -\dfrac{1}{\beta + i\omega} e^{-(\beta + i \omega)t}|^{\infty}_0 = \dfrac{1}{\beta + i \omega} \\ = \dfrac{\beta - i\omega}{\beta^2 + \omega^2}

求积分

12πβiωβ2+ω2eiωtdω=12π(βiω)(cosωt+isinωt)β2+ω2dω\dfrac{1}{2\pi} \int_{-\infty}^{\infty} \dfrac{\beta - i\omega}{\beta^2 + \omega^2} e^{i\omega t} d\omega = \dfrac{1}{2\pi} \int_{-\infty}^{\infty} \dfrac{(\beta - i\omega)(\cos \omega t + i \sin \omega t)}{\beta^2 + \omega^2} d\omega

由奇偶性分析,可以得到

0βcosωt+ωsinωtβ2+ω2dω=π{eβtt>012t=00t<0\int_0^{\infty} \dfrac{\beta \cos \omega t + \omega \sin \omega t}{\beta^2 + \omega^2} d\omega = \pi \begin{cases} e^{-\beta t} & t>0 \\ \dfrac{1}{2} & t=0 \\ 0 & t<0 \end{cases}

这个题目还提供一个常用结论

F[eαtu(t)]=1α+iω    F1[1α+iω]=eαtu(t),α>0\mathcal{F}[e^{-\alpha t} u(t)] = \frac{1}{\alpha + i \omega}\iff \mathcal{F}^{-1} \left[ \frac{1}{\alpha + i \omega} \right] = e^{-\alpha t} u(t) , \quad \alpha > 0


重要的Fourier变换

δ\delta函数的简单介绍

冲激函数:峰值集中性

δ(x)={0x0x=0\delta(x) = \begin{cases} 0 & x \neq 0 \\ \infty & x=0 \end{cases}

归一化条件

δ(x)dx=1\int_{-\infty}^{\infty} \delta(x) \, dx = 1

抽样性质(筛分性质)

f(x)δ(x)dx=f(0)\int_{-\infty}^{\infty} f(x) \delta(x) \, dx = f(0)

平移性质(筛分性质)

f(x)δ(xx0)dx=f(x0)\int_{-\infty}^{\infty} f(x) \delta(x-x_0) \, dx = f(x_0)

导数性质:用分部积分就可以得到

f(x)δ(x)dx=f(0)f(x)δ(xx0)dx=f(x0)\int_{-\infty}^{\infty} f(x) \delta'(x) \, dx = f'(0) \\ \int_{-\infty}^{\infty} f(x) \delta'(x-x_0) \, dx = f'(x_0)


δ\delta函数

F[δ(t)]=1    F1[1]=δ(t)F[δ(tt0)]=eiωt0    F[eiωt0]=δ(tt0)\mathcal{F}[\delta(t)] = 1 \iff \mathcal{F}^{-1}[1] = \delta(t) \\ \mathcal{F}[\delta(t-t_0)] = e^{-i\omega t_0} \iff \mathcal{F}[e^{-i\omega t_0}] = \delta(t-t_0)

单位阶跃函数

F[u(t)]=1iω+πδ(ω)\mathcal{F}[u(t)] = \frac{1}{i \omega} + \pi \delta(\omega)

指数函数

F[eiω0t]=2πδ(ωω0)F[1]=2πδω\mathcal{F}[e^{i\omega_0 t}] = 2\pi \delta(\omega - \omega_0) \quad \mathcal{F}[1] = 2\pi \delta{\omega}

正弦/余弦函数

F[sin(ω0t)]=iπ[δ(ωω0)δ(ω+ω0)]    F1[iπ(δ(ωω0)δ(ω+ω0))]=sin(ω0t)F[cos(ω0t)]=π[δ(ωω0)+δ(ω+ω0)]    F1[π(δ(ωω0)+δ(ω+ω0))]=cos(ω0t)\mathcal{F}[\sin(\omega_0 t)] = i\pi \left[ \delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right] \iff \mathcal{F}^{-1} \left[ i\pi \left( \delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right) \right] = \sin(\omega_0 t) \\ \mathcal{F}[\cos(\omega_0 t)] = \pi \left[ \delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right] \iff \mathcal{F}^{-1} \left[ \pi \left( \delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right) \right] = \cos(\omega_0 t)

et2e^{-t^2}的Fourier变换

两种方法可以求得,用像函数的微分性,或者用积分公式

F[et2]=πeω24\mathcal{F}[e^{-t^2}] = \sqrt{\pi} e^{-\frac{\omega^2}{4}}


推导过程

F(ω)=et2eiωtdt=e(t2+iωt)dtF(\omega) = \int_{-\infty}^{\infty} e^{-t^2} e^{-i\omega t} \, dt = \int_{-\infty}^{\infty} e^{-(t^2 + i\omega t)} \, dt

通过完全平方法简化

t2+iωt=(t+iω2)2ω24t^2 + i\omega t = \left(t + \frac{i\omega}{2}\right)^2 - \frac{\omega^2}{4}

于是积分变为:

F(ω)=e(t+iω2)2eω24dtF(\omega) = \int_{-\infty}^{\infty} e^{-\left(t + \frac{i\omega}{2}\right)^2} e^{-\frac{\omega^2}{4}} \, dt

常数 eω24e^{-\frac{\omega^2}{4}}可以提到积分外部:

F(ω)=eω24e(t+iω2)2dtF(\omega) = e^{-\frac{\omega^2}{4}} \int_{-\infty}^{\infty} e^{-\left(t + \frac{i\omega}{2}\right)^2} \, dt

根据标准高斯积分公式以及复变积分平移的不变性(复变积分的章节有讲)

ex2dx=π\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}

所以:

F(ω)=πeω24F(\omega) = \sqrt{\pi} e^{-\frac{\omega^2}{4}}

因此,et2e^{-t^2} 的 Fourier 变换为

F[et2]=πeω24\mathcal{F}[e^{-t^2}] = \sqrt{\pi} e^{-\frac{\omega^2}{4}}


Fourier变换的性质

以下所有性质中,设F[f(t)]=F(ω)\mathscr{F}[f(t)] = F(\omega)

线性性质

相似性

F[f(at)]=1aF(ωa)F1[F(aω)]=1af(ta)\mathscr{F}[f(at)] = \dfrac{1}{\lvert a \rvert} F(\dfrac{\omega}{a}) \\ \mathscr{F}^{-1}[F(a\omega)] = \dfrac{1}{\lvert a \rvert} f(\dfrac{t}{a})

位移性质

F[f(tt0)]=eiωt0F(ω)F[eiω0tf(t)]=F(ωω0)\mathscr{F}[f(t-t_0)] = e^{-i\omega t_0} F(\omega) \\ \mathscr{F}[e^{i\omega_0 t} f(t)] = F(\omega - \omega_0)

微分性

1. 原像的微分性

性质

如果 limtf(t)=0\lim_{\lvert t \rvert \to \infty} f(t) = 0,那么有

F{f(t)}=iωF(ω)\mathcal{F}\left\{ f'(t) \right\} = i\omega F(\omega)

更一般地,

F{f(n)(t)}=(iω)nF(ω)\mathcal{F}\left\{ f^{(n)}(t) \right\} = (i\omega)^n F(\omega)


推导过程

由傅里叶变换的定义

F(ω)=f(t)eiωtdtF(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} \, dt

使用分部积分

F{f(t)}=f(t)eiωtdt=[f(t)eiωt]f(t)(iω)eiωtdt\mathcal{F}\{f'(t)\} = \int_{-\infty}^{\infty} f'(t) e^{-i\omega t} \, dt \\ = \left[ f(t)e^{-i\omega t} \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f(t) (-i\omega) e^{-i\omega t} \, dt

故如果 limtf(t)=0\lim_{\lvert t \rvert \to \infty} f(t) = 0,则

F{f(t)}=iωF(ω)\mathcal{F}\{f'(t)\} = i\omega F(\omega)


2. 像的微分性

性质

F(ω)=iF[tf(t)]F[tf(t)]=iF(ω)F'(\omega) = -i \mathcal{F} \left[tf(t)\right] \\ \mathscr{F}[tf(t)] = iF'(\omega)

更一般地,

F(n)(ω)=iF[tf(t)]F^{(n)}(\omega) = -i \mathcal{F} \left[tf(t)\right]


推导过程:

从傅里叶反变换定义出发:

f(t)=12πF(ω)eiωtdωf(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} \, d\omega

F(ω) F(\omega) 的导数 F(ω) F'(\omega) 求傅里叶反变换:

F1{F(ω)}=12πF(ω)eiωtdω\mathcal{F}^{-1}\{F'(\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F'(\omega) e^{i\omega t} \, d\omega

使用分部积分

F1{F(ω)}=[F(ω)eiωt]F(ω)(iteiωt)dω=it12πF(ω)eiωtdω\mathcal{F}^{-1}\{F'(\omega)\} = \left[ F(\omega) e^{i\omega t} \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} F(\omega) \cdot (i t e^{i\omega t}) \, d\omega \\ = -i t \cdot \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} \, d\omega

因此,

F1{F(ω)}=itf(t)\mathcal{F}^{-1}\{F'(\omega)\} = -i t f(t)

F(ω)=iF[tf(t)]F'(\omega) = -i \mathcal{F} \left[tf(t)\right]


积分性

如果limttf(τ)dτ=0\lim_{t \to \infty}\int_{-\infty}^{t}f(\tau) \, d \tau = 0,则有以下积分性质

F[tf(τ)dτ]=1iωF(ω)\mathscr{F}[\int_{-\infty}^{t}f(\tau) \, d \tau] =\dfrac{1}{i\omega} F(\omega)

更一般地,

F[tf(τ)dτ]=1iωF(ω)+πF(0)δ(ω)\mathscr{F}[\int_{-\infty}^{t}f(\tau) \, d \tau] =\dfrac{1}{i\omega} F(\omega) + \pi F(0) \delta(\omega)


卷积性质

对于两个函数 f(t)f(t)g(t)g(t),它们的卷积 (fg)(t)(f * g)(t) 的傅里叶变换等于它们各自傅里叶变换的乘积,即:

F{(fg)(t)}=F(ω)G(ω)\mathcal{F}\{(f * g)(t)\} = F(\omega) G(\omega)

其中 F(ω)=F{f(t)}F(\omega) = \mathcal{F}\{f(t)\}G(ω)=F{g(t)}G(\omega) = \mathcal{F}\{g(t)\}


证明过程

卷积的定义为:

(fg)(t)=f(τ)g(tτ)dτ(f * g)(t) = \int_{-\infty}^{\infty} f(\tau) g(t - \tau) \, d\tau

(fg)(t)(f * g)(t) 进行傅里叶变换:

F{(fg)(t)}=(f(τ)g(tτ)dτ)ejωtdt\mathcal{F}\{(f * g)(t)\} = \int_{-\infty}^{\infty} \left( \int_{-\infty}^{\infty} f(\tau) g(t - \tau) \, d\tau \right) e^{-j \omega t} \, dt

交换积分顺序,得到:

F{(fg)(t)}=f(τ)(g(tτ)ejωtdt)dτ\mathcal{F}\{(f * g)(t)\} = \int_{-\infty}^{\infty} f(\tau) \left( \int_{-\infty}^{\infty} g(t - \tau) e^{-j \omega t} \, dt \right) d\tau

u=tτu = t - \tau,则 t=u+τt = u + \taudt=dudt = du,代入得到:

F{(fg)(t)}=f(τ)(g(u)ejω(u+τ)du)dτ\mathcal{F}\{(f * g)(t)\} = \int_{-\infty}^{\infty} f(\tau) \left( \int_{-\infty}^{\infty} g(u) e^{-j \omega (u + \tau)} \, du \right) d\tau

将指数项展开:

F{(fg)(t)}=f(τ)ejωτ(g(u)ejωudu)dτ\mathcal{F}\{(f * g)(t)\} = \int_{-\infty}^{\infty} f(\tau) e^{-j \omega \tau} \left( \int_{-\infty}^{\infty} g(u) e^{-j \omega u} \, du \right) d\tau

将与τ\tau无关项提出积分,得到:

F{(fg)(t)}=(f(τ)ejωτdτ)(g(u)ejωudu)\mathcal{F}\{(f * g)(t)\} = \left( \int_{-\infty}^{\infty} f(\tau) e^{-j \omega \tau} \, d\tau \right) \left( \int_{-\infty}^{\infty} g(u) e^{-j \omega u} \, du \right)

F{(fg)(t)}=F(ω)G(ω)\mathcal{F}\{(f * g)(t)\} = F(\omega) G(\omega)

这证明了傅里叶变换的卷积性质。


逆变换的卷积性质

对于两个频域函数 F(ω)F(\omega)G(ω)G(\omega),它们的卷积 (FG)(ω)(F * G)(\omega) 的傅里叶逆变换等于它们各自傅里叶逆变换的乘积,即:

F1{(FG)(ω)}=2πf(t)g(t)\mathcal{F}^{-1}\{(F * G)(\omega)\} = 2\pi f(t) g(t)

其中 f(t)=F1{F(ω)}f(t) = \mathcal{F}^{-1}\{F(\omega)\}g(t)=F1{G(ω)}g(t) = \mathcal{F}^{-1}\{G(\omega)\}


证明过程

频域卷积的定义为:

(FG)(ω)=F(ξ)G(ωξ)dξ(F * G)(\omega) = \int_{-\infty}^{\infty} F(\xi) G(\omega - \xi) \, d\xi

(FG)(ω)(F * G)(\omega) 求傅里叶逆变换:

F1{(FG)(ω)}=12π(F(ξ)G(ωξ)dξ)ejωtdω\mathcal{F}^{-1}\{(F * G)(\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left( \int_{-\infty}^{\infty} F(\xi) G(\omega - \xi) \, d\xi \right) e^{j \omega t} \, d\omega

交换积分顺序,得到:

F1{(FG)(ω)}=12πF(ξ)(G(ωξ)ejωtdω)dξ\mathcal{F}^{-1}\{(F * G)(\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\xi) \left( \int_{-\infty}^{\infty} G(\omega - \xi) e^{j \omega t} \, d\omega \right) d\xi

η=ωξ\eta = \omega - \xi,则 ω=η+ξ\omega = \eta + \xidω=dηd\omega = d\eta,代入得到:

F1{(FG)(ω)}=12πF(ξ)(G(η)ej(η+ξ)tdη)dξ\mathcal{F}^{-1}\{(F * G)(\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\xi) \left( \int_{-\infty}^{\infty} G(\eta) e^{j (\eta + \xi) t} \, d\eta \right) d\xi

将指数项展开:

F1{(FG)(ω)}=12πF(ξ)ejξt(G(η)ejηtdη)dξ\mathcal{F}^{-1}\{(F * G)(\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\xi) e^{j \xi t} \left( \int_{-\infty}^{\infty} G(\eta) e^{j \eta t} \, d\eta \right) d\xi

根据傅里叶逆变换的定义,得到:

F1{(FG)(ω)}=2π(12πF(ξ)ejξtdξ)(12πG(η)ejηtdη)\mathcal{F}^{-1}\{(F * G)(\omega)\} = 2\pi \left( \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\xi) e^{j \xi t} \, d\xi \right) \left( \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\eta) e^{j \eta t} \, d\eta \right)

F1{(FG)(ω)}=2πf(t)g(t)\mathcal{F}^{-1}\{(F * G)(\omega)\} = 2 \pi f(t) g(t)

这证明了傅里叶逆变换的卷积性质。


Fourier变换的应用

解常系数常微分方程

x(t)x(t)=f(t),<t<+x''(t) - x(t) = -f(t)\, , -\infty<t<+\infty

X(ω)=F[x(t)]F(ω)=F[f(t)]X(\omega) = \mathcal{F} [x(t)] \quad F(\omega) = \mathcal{F} [f(t)]

原方程两边进行傅里叶变换,得到

ω2X(ω)X(ω)=F(ω)-\omega^2 X(\omega) -X(\omega) = -F(\omega)

解得

X(ω)=F(ω)ω2+1X(\omega) = \dfrac{F(\omega)}{\omega^2 + 1}

再对X(ω)X(\omega)进行傅里叶逆变换,即得解x(t)x(t)

x(t)=F1[X(ω)]=F1[F(ω)ω2+1]=F1[1ω2+1]F1[F(ω)]=12etf(t)=12f(s)etsdsx(t) = \mathcal{F}^{-1} [X(\omega)] = \mathcal{F}^{-1} [\dfrac{F(\omega)}{\omega^2 + 1}] \\ = \mathcal{F}^{-1}[\dfrac{1}{\omega^2 + 1}] * \mathcal{F}^{-1}[F(\omega)] \\ = \dfrac{1}{2} e^{- \lvert t \rvert} * f(t) = \dfrac{1}{2} \int_{-\infty}^{\infty} f(s) e^{\lvert t-s \rvert} ds

Laplace变换

由于Fourier变换对原函数的性质要求较为严格,很多情况下难以满足,而且-\infty\infty的积分在很多需要分析的情况下不适用(很多情况只考虑0以后的情形)

故考虑对其进行改进

F[u(t)f(t)eσt]=0f(t)eiωteσtdt=0f(t)eptdt\mathscr{F} [u(t)f(t)e^{-\sigma t}] = \int_{0}^{\infty} f(t) e^{-i\omega t} e^{-\sigma t} dt = \int_{0}^{\infty} f(t) e^{-pt} dt

其中

p=σ+iωp = \sigma + i \omega

定义

故定义laplace变换为

L(t)=0f(t)eptdt\mathscr{L}(t) = \int_{0}^{\infty} f(t) e^{-pt} dt

适用Laplace变换的函数

指数级函数:对于一个实变量的复函数f(t)f(t),如果存在M>0M>0及实数σc\sigma_c,使得

f(t)Meσct,t>0\lvert f(t) \rvert \leq M e^{\sigma_c t} ,\, \forall t > 0

定理:如果函数f(t)f(t)满足

  1. 在任一有限区间上分段连续
  2. t+t \to +\infty时,f(t)f(t)是指数级函数

F(p)=0+f(t)eptdtF(p) = \int_0^{+\infty} f(t) e^{-pt} dt在半平面Rep=σ>σcRe \, p = \sigma > \sigma_c上存在且解析,其中σc\sigma_cf(t)f(t)的增长指数

这里证明一个存在性:

0f(t)eptdt0MeσcteσtdtM1σσc\lvert \int_0^{\infty} f(t) e^{-pt} dt \rvert \leq \int_{0}^\infty M e^{\sigma_c t} e^{-\sigma t} dt \leq M \dfrac{1}{\sigma - \sigma_c}

常用函数的Laplace变换

单位阶跃函数

L[u(t)]=1p    L1[1p]=1\mathscr{L}[u(t)] = \dfrac{1}{p} \iff \mathscr{L}^{-1} [\dfrac{1}{p}] = 1

指数函数ekte^{kt}

L[ekt]=1pk    L1[1pk]=ekt\mathscr{L}[e^{kt}] = \dfrac{1}{p-k} \iff \mathscr{L}^{-1} [\dfrac{1}{p-k}] = e^{kt}

正弦函数,余弦函数

L[sinkt]=kp2+k2    L1[kp2+k2]=sinktL[coskt]=pp2+k2    L1[pp2+k2]=coskt\mathscr{L}[\sin kt] = \dfrac{k}{p^2 + k^2} \iff \mathscr{L}^{-1} [\dfrac{k}{p^2 + k^2}] = \sin kt \\ \mathscr{L}[\cos kt] = \dfrac{p}{p^2 + k^2} \iff \mathscr{L}^{-1} [\dfrac{p}{p^2 + k^2}] = \cos kt

幂函数tnt^n

L[t]=1p2    L1[1p2]=tL[tn]=n!pn+1    L1[1pn+1]=1n!tn\mathscr{L}[t] = \dfrac{1}{p^2} \iff \mathscr{L}^{-1} [\dfrac{1}{p^2}] = t \\ \mathscr{L}[t^n] = \dfrac{n!}{p^{n+1}} \iff \mathscr{L}^{-1}[\dfrac{1}{p^{n+1}}] = \dfrac{1}{n!} t^n

一般幂函数tmt^mm>1m>-1的实数)

Gamma函数

Γ(z)=0tz1etdt\Gamma(z) = \int_0^{\infty} t^{z-1} e^{-t} \, dt

对于正整数,Gamma函数和阶乘的关系

Γ(n)=(n1)!\Gamma(n) = (n-1)!

一般幂函数可以表示为

L[tm]=Γ(m+1)pm+1\mathscr{L}[t^m] = \dfrac{\Gamma(m+1)}{p^{m+1}}

Laplace变换的性质

F(p)=L[f(t)]F(p) = \mathscr{L}[f(t)]

线性性

L[αf(t)+βg(t)]=αL[f(t)]+βL[g(t)]L1[αF(p)+βG(p)]=αL1[F(p)]+βL1[G(p)]\mathscr{L}[\alpha f(t) + \beta g(t)] = \alpha \mathscr{L}[f(t)] + \beta \mathscr{L}[g(t)] \\ \mathscr{L}^{-1}[\alpha F(p) + \beta G(p)] = \alpha \mathscr{L}^{-1}[F(p)] + \beta \mathscr{L}^{-1}[G(p)]

延迟性质

L[f(tt0)u(tt0)]=ept0F(p)L1[ept0F(p)]=f(tt0)u(tt0)\mathscr{L}[f(t-t_0)u(t-t_0)] = e^{-pt_0}F(p) \\ \mathscr{L}^{-1}[e^{-pt_0}F(p)] = f(t-t_0)u(t-t_0)

平移性质

F(pp0)=L[ep0tf(t)]L1[F(pp0)]=ep0tf(t)F(p - p_0) = \mathscr{L} [e^{p_0 t} f(t)] \\ \mathscr{L}^{-1}[F(p - p_0)] = e^{p_0 t}f(t)

微分性质

如果函数f(t)f(t)[0,+)[0,+\infty)上可微且F(p)=L[f(t)]F(p) = \mathscr{L}[f(t)],则

L[f(t)]=pF(p)f(0)    L1[pF(p)f(0)]=f(t)F(p)=L[tf(t)]    L1[F(p)]=tf(t)\mathscr{L}[f'(t)] = pF(p) - f(0) \iff \mathscr{L}^{-1}[pF(p) - f(0)] = f'(t) \\ F'(p) = -\mathscr{L}[tf(t)] \iff \mathscr{L}^{-1}[F'(p)] = -tf(t) \\

更一般地,

L[f(n)(t)]=pnF(p)[f(n1)(0)++pn1f(0)]F(n)(p)=(1)nL[tnf(t)]\mathscr{L}[f^{(n)}(t)] = p^nF(p) - [f^{(n-1)}(0) + \cdots + p^{n-1}f(0)] \\ F^{(n)}(p) = (-1)^n \mathscr{L}[t^n f(t)]

积分性质

L[0tf(s)ds]=F(p)p\mathscr{L} [\int_{0}^t f(s) \, ds] = \dfrac{F(p)}{p}

如果pF(s)ds\int_p^\infty F(s) \, ds收敛,则

p+F(s)ds=L[f(t)t]\int_{p}^{+\infty} F(s) ds = \mathscr{L} [\dfrac{f(t)}{t}]

卷积性质

Laplace变换考虑[0,+)[0,+\infty)上的卷积(即函数<0的部分为0)

f1(t)f2(t)=0tf1(s)f2(ts)dsf_1(t) * f_2(t) = \int_{0}^t f_1(s) f_2(t-s) \, ds

有如下性质

L[f1f2]=F1(p)F2(p)L1[F1(p)F2(p)]=f1(t)f2(t)\mathscr{L}[f_1 * f_2] = F_1(p) F_2(p) \\ \mathscr{L}^{-1}[F_1(p)F_2(p)] = f_1(t) * f_2(t)

Laplace变换的应用

求解微分方程

没什么好说的,先Laplace变换变成一般方程,然后求出解后再Laplace逆变换

用Laplace变换求广义积分

弦振动方程的初值问题

使用Fourier变换求解

{utta2uxx=0<x<,t>0u(0,x)=φ(x),ut(0,x)=ψ(x)\begin{cases} u_{tt} - a^2 u_{xx} = 0 & -\infty<x<\infty, t>0 \\ u(0,x) = \varphi(x), u_t(0,x) = \psi(x) \end{cases}

Step1.先对u(t,x)关于x作Fourier变换

u^(t,ω)=F[u(t,x)]=u(t,x)eixωdx\hat{u}(t,\omega) = \mathscr{F}[u(t,x)] = \int_{-\infty}^{\infty} u(t,x) e^{-ix\omega} dx

为u(t,x)关于x的Fourier变换

utt^=utt(t,x)eixωdx=ttu(t,x)eixωdx=ttu^(t,ω)uxx^=(iω)2u^(t,ω)=ω2u^(t,ω)\hat{u_{tt}} = \int_{-\infty}^{\infty} u_{tt}(t,x) e^{-ix\omega} dx = \partial_{tt} \int_{-\infty}^{\infty} u(t,x) e^{-ix\omega} dx \\ = \partial_{tt} \hat{u}(t,\omega) \\ \hat{u_{xx}} = (i\omega)^2 \hat{u}(t,\omega) = -\omega^2 \hat{u}(t,\omega)

原方程和初值条件都进行Fourier变换,得到

{ttu^(t,ω)+a2ω2u^(t,ω)=0u^(0,ω)=φ^(ω)ut^(0,ω)=ψ^(ω)\begin{cases} \partial_{tt} \hat{u}(t,\omega) + a^2 \omega^2 \hat{u}(t,\omega) = 0 \\ \hat{u}(0,\omega) = \hat{\varphi}(\omega) \\ \hat{u_t}(0,\omega) = \hat{\psi} (\omega) \end{cases}

可以看到,PDE已经转换为一个二阶齐次常微分方程

Step2. 解二阶齐次ODE

u^(t,ω)=C1eaωit+C2eaωit\hat{u}(t,\omega) = C_1 e^{-a\omega i \, t} + C_2 e^{a\omega i \, t}

Tips. 因为后面要做傅里叶逆变换,所以这边不要写成三角函数形式,写成e的复指数方便后序处理

u^(0,ω)=C1+C2=φ^(ω)ut^(0,ω)=C1(aωi)+C2(aωi)=ψ^(ω)\hat{u}(0,\omega) = C_1 + C_2 = \hat{\varphi}(\omega) \\ \hat{u_t}(0,\omega) = C_1 (-a\omega i) + C_2 (a\omega i) = \hat{\psi}(\omega)

解得

C1=12[φ^(ω)1aωiψ^(ω)]C2=12[φ^(ω)+1aωiψ^(ω)]C_1 = \dfrac{1}{2}[\hat{\varphi}(\omega) - \dfrac{1}{a\omega i} \hat{\psi}(\omega)] \\ C_2 = \dfrac{1}{2}[\hat{\varphi}(\omega) + \dfrac{1}{a\omega i} \hat{\psi}(\omega)]

代入

u^(t,ω)=12[φ^(ω)1aωiψ^(ω)]eaωit+12[φ^(ω)+1aωiψ^(ω)]eaωit=12φ^(ω)[eaωit+eaωit]+12a1ωiψ^(ω)[eaωit+eaωit]\hat{u}(t,\omega) = \dfrac{1}{2}[\hat{\varphi}(\omega) - \dfrac{1}{a\omega i} \hat{\psi}(\omega)] e^{-a\omega i \, t} + \dfrac{1}{2}[\hat{\varphi}(\omega) + \dfrac{1}{a\omega i} \hat{\psi}(\omega)] e^{a\omega i \, t} \\ = \dfrac{1}{2} \hat{\varphi}(\omega) [e^{-a\omega i \, t} + e^{a\omega i \, t}] + \dfrac{1}{2a} \dfrac{1}{\omega i} \hat{\psi}(\omega) [- e^{-a\omega i \, t} + e^{a\omega i \, t}]

Step3. 关于ω\omega作Fourier逆变换

u(t,x)=F1[u^(t,ω)]=12[φ(xat)+φ(x+at)]+12a[x+atφ(τ)dτxatφ(τ)dτ]=12[φ(xat)+φ(x+at)]+12axatx+atψ(τ)dτu(t,x) = \mathscr{F}^{-1}[\hat{u} (t,\omega)] \\ = \dfrac{1}{2}[\varphi(x-at) + \varphi(x+at)] + \dfrac{1}{2a}[\int_{-\infty}^{x+at} \varphi(\tau)\, d\tau - \int_{-\infty}^{x-at} \varphi(\tau) \, d\tau] \\ = \dfrac{1}{2}[\varphi(x-at) + \varphi(x+at)] + \dfrac{1}{2a} \int_{x-at}^{x+at} \psi(\tau)\, d\tau

这个结论称为达朗贝尔公式

u(t,x)=12[φ(xat)+φ(x+at)]+12axatx+atψ(τ)dτu(t,x) = \dfrac{1}{2}[\varphi(x-at) + \varphi(x+at)] + \dfrac{1}{2a} \int_{x-at}^{x+at} \psi(\tau)\, d\tau

行波法

引入两个新的独立变量

ξ=xatη=x+at\xi = x-at \quad \eta = x + at

考虑u(t,x)=U(ξ,η)u(t,x) = U(\xi,\eta),则有

ux=Uξξx+Uηηx=Uξ+Uηuxx=Uξξ+2Uξη+Uηηut=Uξ(a)+Uηautt=Uξξ2a2Uξη+a2Uηηu_x = U_{\xi} \xi_{x} + U_{\eta} \eta_{x} = U_{\xi} + U_{\eta} \\ u_{xx} = U_{\xi \xi} + 2U_{\xi \eta} + U_{\eta \eta} \\ u_t = U_{\xi} (-a) + U_{\eta} a \\ u_{tt} = U_{\xi \xi} - 2a^2 U_{\xi \eta} + a^2 U_{\eta \eta}

代入原来的PDE,可以得到一个很简单的方程

Uξη=0U_{\xi \eta} = 0

那么就有

(Uξ)η=0    Uξ=f(ξ)    U(ξ,η)=f(ξ)dξ+C(η)=F(ξ)+G(η)(U_{\xi})_{\eta} = 0 \implies U_{\xi} = f(\xi) \\ \implies U(\xi,\eta) = \int f(\xi) \, d \xi + C(\eta) = F(\xi) + G(\eta)

从而有

u(t,x)=U(ξ,η)=F(xat)+G(x+at)u(t,x) = U(\xi,\eta) = F(x-at) + G(x+at)

然后利用初始条件,确定F和G即可

u(0,x)=F(x)+G(x)=φ(x)ut(0,x)=aF(x)+aG(x)=ψ(x)u(0,x) = F(x) + G(x) = \varphi(x) \\ u_t(0,x) = - a F'(x) + a G'(x) = \psi(x)

进行一些变形,得到方程

{F(x)+G(x)=φ(x)F(x)+G(x)=1a0xψ(ξ)dξ+C\begin{cases} F(x) + G(x) = \varphi(x) \\ -F(x) + G(x) = \dfrac{1}{a}\int_0^x\psi(\xi) \, d\xi +C \end{cases}

解得

{F(x)=12[φ(x)1a0xψ(ξ)dξC]G(x)=12[φ(x)1a0xψ(ξ)dξ+C]\begin{cases} F(x) = \dfrac{1}{2}[\varphi(x) - \dfrac{1}{a} \int_0^x\psi(\xi) d\xi - C] \\ G(x) = \dfrac{1}{2}[\varphi(x) - \dfrac{1}{a} \int_0^x\psi(\xi) d\xi + C] \end{cases}

从而有

u(t,x)=F(xat)+G(x+at)=12[φ(xat)+φ(x+at)]+12axatx+atψ(ξ)dξu(t,x) = F(x-at) + G(x+at) = \dfrac{1}{2}[\varphi(x-at) + \varphi(x+at)] + \dfrac{1}{2a} \int_{x-at}^{x+at} \psi(\xi)\, d\xi

解的性质

解中的F(xat)F(x-at)可以看成速度为a,向左传播的波

G(x+at)G(x+at)可以看成速度为a,向右传播的波

依赖区间

u(t0,x0):[x0at0,x0+at0]u(t_0,x_0): [x_0-at_0,x_0+at_0]

上的φ,ψ\varphi,\psi的值有关,与区间外的值无关

决定区域

对于x轴上两点x1<x2x_1 < x_2,过x1x_1点做一条斜率为1a\frac{1}{a}的直线,过x2x_2点做一条斜率为1a-\frac{1}{a}的直线,这两条直线与x轴围成的三角形区域内的值完全由x1x_1x2x_2之间的初始值决定,故这个三角形区域被称为决定区域

影响区域

对于x轴上两点x1<x2x_1 < x_2,过x1x_1点做一条斜率为1a-\frac{1}{a}的直线,过x2x_2点做一条斜率为1a\frac{1}{a}的直线,这两条直线与x轴围成的梯形区域内的值受到x1x_1x2x_2之间的初始值的影响,而该区域外的值完全不受x1x_1x2x_2之间的初始值的影响,故这个梯区域被称为影响区域

  • 从这个结论可以看出,弦振动方程具有有限传播速度

非齐次弦振动方程-齐次化原理

{utta2uxx=f(t,x)<x<,t>0u(0,x)=φ(x),ut(0,x)=ψ(x)\begin{cases} u_{tt} - a^2 u_{xx} = f(t,x) & -\infty<x<\infty, t>0 \\ u(0,x) = \varphi(x), u_t(0,x) = \psi(x) \end{cases}

用非齐次问题的解决方法分解该问题,可以得到一个齐次问题+一个非齐次问题,我们已经能够解决齐次问题,接下来要解决非齐次问题

{utta2uxx=f(t,x)<x<,t>0u(0,x)=0,ut(0,x)=0\begin{cases} u_{tt} - a^2 u_{xx} = f(t,x) & -\infty<x<\infty, t>0 \\ u(0,x) = 0, u_t(0,x) = 0 \end{cases}

可以用动量定理将外力条件f(t,x)f(t,x)转变为初始条件,f(t,x)实际上是t时刻在x处单位质量上所受外力

f(t,x)=F(t,x)ρf(t,x) = \dfrac{F(t,x)}{\rho}


考虑

t:τ[0,t]f(τ,x)t: \tau \in [0,t] \quad f(\tau,x)

[ti1,ti][t_{i-1},t_{i}]的时间元Δti\Delta t_i,一个时间元内的外力条件可以视为恒定f(ti,x)f(t_i,x),则由动量定理,时间点tit_i相对上一时刻速度满足以下关系

f(ti,x)Δti=1w~tt=tif(t_i,x) \Delta t_i = 1 \cdot \tilde{w}_t\rvert_{t = t_{i}}

其中w~t\tilde{w}_ttit_i时刻相对于ti1t_{i-1}时刻的速度,w~\tilde{w}tit_i时刻相对于ti1t_{i-1}时刻的位移

且在tit_i时刻,有

{w~tta2w~xx=0<x<,t>0w~(0,x)=0,w~t(0,x)=f(ti,x)Δxi\begin{cases} \tilde{w}_{tt} - a^2 \tilde{w}_{xx} = 0 & -\infty<x<\infty, t>0 \\ \tilde{w}(0,x) = 0, \tilde{w}_t(0,x) = f(t_i,x)\Delta x_i \end{cases}

从而可以将u(t,x)u(t,x)表示为

u(t,x)=i=1n+1w~(t,x;ti,Δti)u(t,x) = \sum_{i=1}^{n+1} \tilde{w}(t,x;t_i,\Delta t_i)

w(t,x;ti)=w~(t,x;ti,Δti)Δtiw(t,x;t_i) = \dfrac{\tilde{w}(t,x;t_i,\Delta t_i)}{\Delta t_i}

则方程化为

{wtta2wxx=0<x<,t>0w(0,x)=0,wt(0,x)=f(ti,x)\begin{cases} w_{tt} - a^2 w_{xx} = 0 & -\infty<x<\infty, t>0 \\ w(0,x) = 0, w_t(0,x) = f(t_i,x) \end{cases}

u(t,x)u(t,x)

u(t,x)=i=1n+1w(t,x;ti)Δtiu(t,x) = \sum_{i=1}^{n+1} w(t,x;t_i) \Delta t_i


结论:

方程

{wtta2wxx=0<x<,t>0w(0,x)=0,wt(0,x)=f(τ,x)\begin{cases} w_{tt} - a^2 w_{xx} = 0 & -\infty<x<\infty, t>0 \\ w(0,x) = 0, w_t(0,x) = f(\tau,x) \end{cases}

取极限Δti0\Delta t_i \to 0,求和转化为积分

u(t,x)=0tw(t,x;τ)dτu(t,x) = \int_{0}^{t} w(t,x;\tau) d \tau


再使用达朗贝尔公式

s=tτs = t - \tau,得到

w(t,x;τ)=12axasx+asf(τ,ξ)dξ=12axa(tτ)x+a(tτ)f(τ,ξ)dξw(t,x;\tau) = \dfrac{1}{2a} \int_{x-as}^{x+as} f(\tau,\xi) \, d \xi = \dfrac{1}{2a} \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\tau,\xi) \, d \xi

整理并化简,可以得出非齐次初值问题的解(完整版达朗贝尔公式)

u(t,x)=12[φ(xat)+φ(x+at)]+12axatx+atψ(τ)dτ+12a0txa(tτ)x+a(tτ)f(τ,ξ)dξdτu(t,x) = \dfrac{1}{2}[\varphi(x-at) + \varphi(x+at)] + \dfrac{1}{2a} \int_{x-at}^{x+at} \psi(\tau)\, d\tau +\dfrac{1}{2a} \int_{0}^{t} \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\tau,\xi) \, d \xi \, d\tau

Chapter3 积分变换法

3.3 热传导方程的初值问题

{uta2uxx=0<x<,t>0u(0,x)=φ(x)\begin{cases} u_{t} - a^2 u_{xx} = 0 & -\infty<x<\infty, t>0 \\ u(0,x) = \varphi(x) \end{cases}

使用Fourier变换求解

Step1. 对x做Fourier变换

F[u(t,x)]=u(t,x)eiωxdx=u^(t,ω)F[φ(x)]=φ^(ω)\mathscr{F}[u(t,x)] = \int_{-\infty}^{\infty} u(t,x) e^{-i\omega x} \, dx = \hat{u}(t,\omega) \\ \mathscr{F}[\varphi(x)] = \hat{\varphi}(\omega)

则有

F[ut]=tu^(t,ω)Fuxx=(iω)2u^(t,ω)=ω2u^(t,ω)\mathscr{F}[u_t] = \partial_t \hat{u}(t,\omega) \\ \mathscr{F}{u_xx} = (i\omega)^2 \hat{u}(t,\omega) = -\omega^2 \hat{u}(t,\omega)

Step2. 解关于t的常微分方程

{tu^(t,ω)+a2ω2u^(t,ω)=0u^(0,ω)=φ^(ω)\begin{cases} \partial_t \hat{u}(t,\omega) + a^2 \omega^2 \hat{u}(t,\omega) = 0 \\ \hat{u}(0,\omega) = \hat{\varphi} (\omega) \end{cases}

易得

u^(t,ω)=Cea2ω2t=φ^(ω)ea2ω2t\hat{u}(t,\omega) = C e^{-a^2 \omega^2 t} = \hat{\varphi} (\omega) e^{-a^2 \omega^2 t}

Step3. Fourier逆变换

u(t,x)=F1[u^(t,ω)]=F1[ea2ω2t]F1[φ^(ω)]u(t,x) = \mathscr{F}^{-1}[\hat{u}(t,\omega)] \\ = \mathscr{F}^{-1} [e^{-a^2 \omega^2 t}] * \mathscr{F}^{-1}[\hat{\varphi}(\omega)]

分别计算

F1[ea2ω2t]=12πea2ω2teiωxdω=12πea2t[ω2iωxa2t]dω=12πea2t(ωix2a2t)2x24a2tdω=12πea2t(ωix2a2t)2dωex24a2t\mathscr{F}^{-1}[e^{-a^2 \omega^2 t}] =\dfrac{1}{2\pi} \int_{-\infty}^{\infty} e^{-a^2 \omega^2 t} e^{i\omega x} d \omega \\ = \dfrac{1}{2\pi} \int_{-\infty}^{\infty} e^{-a^2 t[\omega^2 - \frac{i\omega x}{a^2t}]} d\omega = \dfrac{1}{2\pi} \int_{-\infty}^{\infty} e^{-a^2 t (\omega - \frac{ix}{2a^2 t})^2 - \frac{x^2}{4a^2 t}} d\omega \\ = \dfrac{1}{2\pi} \int_{-\infty}^{\infty} e^{-a^2 t (\omega - \frac{ix}{2a^2 t})^2} \, d\omega \, e^{- \frac{x^2}{4a^2 t}}

由积分定理,

F1[ea2ω2t]=12πea2ω2tdωex24a2t=12π1atey2dtex24a2t=12aπtex24a2t\mathscr{F}^{-1}[e^{-a^2 \omega^2 t}] = \dfrac{1}{2\pi} \int_{-\infty}^{\infty} e^{-a^2 \omega^2t} \, d\omega \,e^{- \frac{x^2}{4a^2 t}} = \dfrac{1}{2\pi} \dfrac{1}{a\sqrt{t}} \int_{-\infty}^{\infty} e^{-y^2} \, dt \, e^{- \frac{x^2}{4a^2 t}} \\ = \dfrac{1}{2a\sqrt{\pi t}} e^{- \frac{x^2}{4a^2 t}}

从而得到解的表达式(基本解)

u(t,x)=Gφ=12aπt+ey24a2tφ(xy)dyu(t,x) = G * \varphi = \dfrac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{y^2}{4a^2 t}} \varphi(x-y) \, dy

整理一下,得到

u(t,x)=12aπt+e(xξ)24a2tφ(ξ)dξu(t,x) = \dfrac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(x-\xi)^2}{4a^2 t}} \varphi(\xi) \, d\xi

常见题目

  • 背公式
  • 代入计算
  • 没有其他的

使用齐次化原理解非齐次热传导方程的初值问题

{uta2uxx=f(t,x)<x<,t>0u(0,x)=φ(x)\begin{cases} u_{t} - a^2 u_{xx} = f(t,x) & -\infty<x<\infty, t>0 \\ u(0,x) = \varphi(x) \end{cases}

由叠加原理,只需要考虑非齐次热传导方程,具有齐次初始条件的初值问题

{uta2uxx=f(t,x)<x<,t>0u(0,x)=0\begin{cases} u_{t} - a^2 u_{xx} = f(t,x) & -\infty<x<\infty, t>0 \\ u(0,x) = 0 \end{cases}

使用齐次化原理

u的解可以看作满足以下方程w(t,x;τ)w(t,x;\tau)的叠加

{wta2wxx=0<x<,t>0w(t=τ,x)=f(τ,x)\begin{cases} w_{t} - a^2 w_{xx} = 0 & -\infty<x<\infty, t>0 \\ w(t=\tau,x) = f(\tau,x) \end{cases}

u(t,x)=0tw(t,x;τ)dτu(t,x) = \int_0^t w(t,x;\tau) d\tau

s=tτs = t - \tau

{wsa2wxx=0ws=0=f(τ,x)\begin{cases} w_s - a^2 w_{xx} = 0 \\ w\rvert_{s = 0} = f(\tau,x) \end{cases}

应用前面推过的公式

w(s,x)=12aπsf(τ,ξ)e(xξ)24a2sdξ    w(t,x;τ)=12aπ(tτ)e(xξ)24a2(tτ)dξw(s,x) = \dfrac{1}{2a\sqrt{\pi s}} \int_{-\infty}^{\infty} f(\tau,\xi) e^{-\frac{(x-\xi)^2}{4a^2 s}} \, d\xi \\ \implies w(t,x;\tau) = \dfrac{1}{2a\sqrt{\pi (t-\tau)}}e^{-\frac{(x-\xi)^2}{4a^2 (t-\tau)}} \, d\xi

然后就可以求出u(t,x)u(t,x)

u(t,x)=0tw(t,x;τ)dτ=12aπ0tf(τ,ξ)tτe(xξ)24a2(tτ)dξdτu(t,x) = \int_0^t w(t,x;\tau) d\tau = \dfrac{1}{2a\sqrt{\pi}} \int_{0}^t \int_{-\infty}^{\infty} \dfrac{f(\tau,\xi)}{\sqrt{t-\tau}} e^{-\frac{(x-\xi)^2}{4a^2 (t-\tau)}} \, d\xi \, d\tau

完整的解为

u(t,x)=12aπt+e(xξ)24a2tφ(ξ)dξ+12aπ0tf(τ,ξ)tτe(xξ)24a2(tτ)dξdτu(t,x) = \dfrac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(x-\xi)^2}{4a^2 t}} \varphi(\xi) \, d\xi + \dfrac{1}{2a\sqrt{\pi}} \int_{0}^t \int_{-\infty}^{\infty} \dfrac{f(\tau,\xi)}{\sqrt{t-\tau}} e^{-\frac{(x-\xi)^2}{4a^2 (t-\tau)}} \, d\xi \, d\tau

这个解可以进一步写成以下形式

G(t,x)=12atex24a2tG(t,x) = \dfrac{1}{2a\sqrt{t}} e^{-\frac{x^2}{4a^2 t}}

从而

u(t,x)=0tf(τ,ξ)G(tτ,xξ)dξdτu(t,x) = \int_0^t \int_{-\infty}^{\infty} f(\tau,\xi) G(t-\tau,x-\xi) \, d\xi \, d\tau

然后写出非齐次方程的解

u(t,x)=φ(ξ)G(t,xξ)dξ+0tf(τ,ξ)G(tτ,xξ)dξdτu(t,x) = \int_{-\infty}^{\infty} \varphi(\xi)G(t,x-\xi) d\xi + \int_0^t \int_{-\infty}^{\infty} f(\tau,\xi) G(t-\tau,x-\xi) \, d\xi \, d\tau

3.4 半空间上的弦振动方程,热传导方程的初边值问题

半无界弦上的弦振动方程的初边值问题

考虑一根半无界长的弦,一端固定在x=0x=0,则弦的自由振动满足以下定解问题

{utta2uxx=0x>0,t>0ux=0=0,u有界t>0ut=0=0,utt=0=bx>0\begin{cases} u_{tt} - a^2 u_{xx} = 0 & x>0, t>0 \\ u\rvert_{x=0} = 0 ,u \text{有界} & t>0 \\ u\rvert_{t=0} = 0, u_t\rvert_{t=0} = b & x>0 \end{cases}

对x作Laplace变换

U(t,p)=L[u(t,x)]=u(t,x)epxdxU(t,p) = \mathscr{L}[u(t,x)] = \int_{-\infty}^{\infty} u(t,x) e^{-px} \, dx

易知

L[utt]=Utt(t,p)L[uxx]=p2U(t,p)pu(t,0)ux(t,0)\mathscr{L}[u_{tt}] = U_{tt}(t,p) \\ \mathscr{L}[u_{xx}] = p^2 U(t,p) - pu(t,0) - u_x(t,0)

对t作Laplace变换

U(p,x)=L[u(t,x)]=u(t,x)eptdtU(p,x) = \mathscr{L}[u(t,x)] = \int_{-\infty}^{\infty} u(t,x) e^{-pt} \, dt

易知

L[ux]=Uxx(p,x)L[utt]=p2U(p,x)pu(0,x)ut(0,x)\mathscr{L}[u_{x}] = U_{xx}(p,x) \\ \mathscr{L}[u_{tt}] = p^2 U(p,x) - pu(0,x) - u_t(0,x)

PDE对x作Laplace变换

p2U(p,x)ba2Uxx(p,x)=0    a2d2Udx2+p2U(p,x)=bp^2 U(p,x) - b -a^2U_{xx}(p,x) = 0 \\ \implies -a^2 \dfrac{d^2 U}{dx^2} + p^2 U(p,x) = b

这是个非齐次常微分方程,很容易找到一个特解

U0(p,x)=bp2U_0(p,x) = \dfrac{b}{p^2}

从而得到常微分方程的解

U(p,x)=C1epax+C2epax+bp2U(p,x) = C_1 e^{-\frac{p}{a}x} + C_2 e^{\frac{p}{a}x} + \dfrac{b}{p^2}

又有边界值条件

u(t,0)=0    U(p,0)=0    C1+C2=bp2u有界    C2=0u(t,0) = 0 \implies U(p,0) = 0 \implies C_1 + C_2 = -\dfrac{b}{p^2} \\ u \text{有界} \implies C_2 = 0

从而

C1=bp2C2=0C_1 = -\dfrac{b}{p^2} \quad C_2 = 0

代入,得

U(p,x)=bp2epax+bp2U(p,x) = -\dfrac{b}{p^2} e^{-\frac{p}{a}x} + \dfrac{b}{p^2}

最后Laplace逆变换

u(t,x)=L1[bp2epax+bp2]=b(txa)u(txa)+btu(t,x) = \mathscr{L}^{-1}[-\dfrac{b}{p^2} e^{-\frac{p}{a}x} + \dfrac{b}{p^2}] = -b(t-\frac{x}{a})u(t-\frac{x}{a}) + bt

半无限杆上的热传导方程的初边值问题

{uta2uxx=0x>0,t>0ux=0=φ(t),limx+u有界t>0ut=0=u0x>0\begin{cases} u_{t} - a^2 u_{xx} = 0 & x>0, t>0 \\ u\rvert_{x=0} = \varphi(t) ,\lim_{x\to +\infty} u \text{有界} & t>0 \\ u\rvert_{t=0} = u_0 & x>0 \end{cases}

对x作Laplace变换

pU(p,x)u0a2Uxx(p,x)=0    a2d2Udx2+pU(p,x)=u0pU(p,x) - u_0 - a^2 U_{xx}(p,x) = 0\\ \implies -a^2 \dfrac{d^2 U}{dx^2} + p U(p,x) = u_0

类似地,可以得到

U(p,x)=C1epax+C2epax+u0pU(p,x) = C_1 e^{-\frac{\sqrt{p}}{a} x} + C_2 e^{\frac{\sqrt{p}}{a} x} + \dfrac{u_0}{p}

由有界性,易知C2=0C_2 = 0

代入初始值条件

U(p,0)=C1+u0p=Φ(p)    C1=Φ(p)u0pU(p,x)=(Φ(p)u0p)epax+u0p=Φ(p)epaxu0pepax+u0pU(p,0) = C_1 + \dfrac{u_0}{p} = \Phi(p) \implies C_1 = \Phi(p) - \dfrac{u_0}{p} \\ U(p,x) = (\Phi(p) - \dfrac{u_0}{p}) e^{-\frac{\sqrt{p}}{a}x} + \dfrac{u_0}{p} \\ = \Phi(p) e^{-\frac{\sqrt{p}}{a}x} - \dfrac{u_0}{p} e^{-\frac{\sqrt{p}}{a}x} + \dfrac{u_0}{p}

最后进行Laplace逆变换

u(t,x)=L1[Φ(p)epaxu0pepax+u0p]=φ(t)u(t,x) = \mathscr{L}^{-1}[\Phi(p) e^{-\frac{\sqrt{p}}{a}x} - \dfrac{u_0}{p} e^{-\frac{\sqrt{p}}{a}x} + \dfrac{u_0}{p}] \\ = \varphi(t)

反正很恶心的一堆东西,不想写了

0%