Chapter3 Fourier Series

Chapter3 Fourier Series

Fourier Series Representation of Periodic Signals

I. Appetizer: Motivation

  • Cardiovascular diseases are a significant health concern, with high mortality rates.
  • Electrocardiographic (ECG) signals are a primary screening method for heart conditions.
  • The lecture poses the question: Can we perform automated analysis of ECG signals to recognize different types of arrhythmias like tachycardia, bradycardia, atrial fibrillation, etc.?
  • Can we differentiate arrhythmias based on automated signal analysis, for example, by looking at their periods?

II. Core Questions & Introduction to “Fourier Time”

  1. Representation: Can we represent a periodic signal as a sum of periodic signal components, each with a different period?
  2. Component Definition: If so, how should we define each component?
    • The answer lies in Harmonically Related Complex Exponentials (HRCE).
  3. Component Strength: How do we know the strength of each component in the periodic signal?
    • This involves the definition and evaluation of Fourier series.
  4. Applicability: Is this applicable to all periodic signals or just a specific class?
    • This relates to the convergence of Fourier series.

III. Complex Exponentials as the Building Block

  • Why not just impulses? Convolution uses impulses to decompose signals.
  • Inefficiency of Impulses: For infinitely long signals (like periodic signals), using unit impulses is inefficient.
    • x(t)=cos(ω0τ)δ(tτ)dτx(t) = \int_{-\infty}^{\infty} \cos(\omega_{0}\tau)\delta(t-\tau)d\tau
  • Efficiency of Complex Exponentials: Complex exponentials re themselves infinitely long, making them more efficient for representing long signals.
    • Example: x(t)=cos(ω0t)=12(ejω0t+ejω0t)x(t) = \cos(\omega_{0}t) = \frac{1}{2}(e^{j\omega_{0}t} + e^{-j\omega_{0}t})
  • Frequency Information: Representation by complex exponentials tells us about the frequencies contained in the signal.
  • Definition: A set of signals, {ϕk(t)kZ}\{\phi_{k}(t)|k\in\mathbb{Z}\}, is called a set of Harmonically Related Complex Exponentials if and only if:

    ϕk(t)=ejkω0t for each kZ\phi_{k}(t)=e^{jk\omega_{0}t} \text{ for each } k\in\mathbb{Z}

    where ω00\omega_{0} \ne 0 is called the fundamental frequency.

  • The frequency of ϕk(t)\phi_{k}(t) is kω0k\omega_{0} (k-fold multiple of the fundamental frequency).

  • kk can be positive, negative, or zero (integers).

  • Terminology for Harmonics:

    • ϕ0(t)=1\phi_{0}(t)=1 is called the constant term (or DC component).
    • ϕ±1(t)\phi_{\pm1}(t) are called the first harmonic.
    • ϕ±2(t)\phi_{\pm2}(t) are called the second harmonic, and so on.
  • Periodicity:

    • The fundamental period is T0=2πω0T_{0} = \frac{2\pi}{\omega_{0}}. So, ϕk(t)=ejk(2πT0)t\phi_{k}(t)=e^{jk(\frac{2\pi}{T_{0}})t}.
    • Although the smallest period of the k-th harmonic is T0/kT_0/|k|, T0T_0 is a common period for all harmonics.
    • Any linear combination k=+akejkω0t\sum_{k=-\infty}^{+\infty}a_{k}e^{jk\omega_{0}t} is periodic with a period of T0T_{0}.
  • Adding higher-order harmonics does not change the fundamental period of the combined signal.

V. The Fourier Series Representation

  • Concept: An arbitrary periodic signal may be representable by a linear combination of signals in an HRCE set that has the same fundamental frequency. This is the Fourier series representation.
  • Synthesis Equation: For a periodic signal xT0(t)x_{T_{0}}(t), its Fourier series representation is:

    xT0(t)=k=+akejkω0t, where ω0=2π/T0x_{T_{0}}(t) = \sum_{k=-\infty}^{+\infty}a_{k}e^{jk\omega_{0}t}, \text{ where } \omega_{0}=2\pi/T_{0}

  • “The theorem of Fourier series representation”: For almost every periodic signal xT0(t)x_{T_{0}}(t), there exists a set of coefficients {akCkZ}\{a_{k}\in\mathbb{C}|k\in\mathbb{Z}\} such that the equality above holds.
  • The coefficients aka_k need a formula for calculation.

VI. Determination of the Fourier Series Coefficients (aka_k)

  • Key Identity:

    T0ejkω0τdτ=T0δ[k]={T0,k=00,k0\int_{T_{0}}e^{jk\omega_{0}\tau}d\tau = T_{0}\delta[k] = \begin{cases} T_{0}, & k=0 \\ 0, & k \ne 0 \end{cases}

    This is often written as tt+T0ejkω0τdτ\int_{t}^{t+T_{0}}e^{jk\omega_{0}\tau}d\tau.

    • Proof idea: ejkω0τ=cos(kω0τ)+jsin(kω0τ)e^{jk\omega_{0}\tau} = \cos(k\omega_{0}\tau) + j\sin(k\omega_{0}\tau). The integral of a sinusoid over one full period is zero unless its frequency is zero (i.e., k=0k=0).
  • Analysis Equation (Formula for aka_k):

    ak=1T0T0xT0(t)ejkω0tdta_{k}=\frac{1}{T_{0}}\int_{T_{0}}x_{T_{0}}(t)e^{-jk\omega_{0}t}dt

    • Steps to calculate aka_k:
      1. Take the periodic signal xT0(t)x_{T_0}(t).
      2. Multiply the signal with the conjugate of the k-th order harmonic (ejkω0te^{-jk\omega_{0}t}).
      3. Average the resultant signal over one period (T0T_{0}).

Proof.

1T0T0xT0(t)ejkω0tdt=1T0T0n=anejkω0tejnω0tdt=1T0n=+anT0ej(kn)ω0tdt=1T0n=+anT0δ[nk]=ak\begin{aligned} \frac{1}{T_0} \int_{T_0} x_{T_0}(t) e^{-j k \omega_0 t}\, dt &= \frac{1}{T_0} \int_{T_0} \sum_{n=-\infty}^{\infty} a_n e^{j k \omega_0 t} e^{-j n \omega_0 t}\, dt \\ &= \frac{1}{T_0} \sum_{n=-\infty}^{+\infty} a_n \int_{T_0} e^{j (k-n) \omega_0 t}\, dt \\ &= \frac{1}{T_0} \sum_{n=-\infty}^{+\infty} a_n T_0 \delta[n-k] \\ &= a_k \end{aligned}

VII. Complete Definition of Fourier Series Representation

The Fourier series pair is given by:

  1. Synthesis Equation: xT0(t)=k=+akejkω0tx_{T_{0}}(t)=\sum_{k=-\infty}^{+\infty}a_{k}e^{jk\omega_{0}t}
  2. Analysis Equation: ak=1T0T0xT0(t)ejkω0tdta_{k}=\frac{1}{T_{0}}\int_{T_{0}}x_{T_{0}}(t)e^{-jk\omega_{0}t}dt
  • aka_k is called the Fourier series coefficient or the spectral coefficient of xT0(t)x_{T_{0}}(t).
  • a[k]={ak}a[k]=\{a_{k}\} is called the Fourier series spectrum of xT0(t)x_{T_{0}}(t).
  • The analysis equation performs spectral analysis.

VIII. Examples of Fourier Series

  1. xT0(t)=Cx_{T_{0}}(t)=C (a constant):
    • a0=Ca_0 = C
    • ak=0a_k = 0 for k0\forall k \ne 0
    • FS representation: xT0(t)=Cx_{T_{0}}(t) = C
  2. xT0(t)=cos(ω0t)x_{T_{0}}(t)=\cos(\omega_{0}t):
    • a1=12a_1 = \frac{1}{2}, a1=12a_{-1} = \frac{1}{2}
    • ak=0a_k = 0 if k±1k \ne \pm1
    • FS representation: xT0(t)=12ejω0t+12ejω0tx_{T_{0}}(t) = \frac{1}{2}e^{j\omega_{0}t}+\frac{1}{2}e^{-j\omega_{0}t}
    • Useful identity for derivation: T0ej(kn)ω0τdτ=T0δ[kn]\int_{T_{0}}e^{j(k-n)\omega_{0}\tau}d\tau=T_{0}\delta[k-n]

IX. Displaying the Fourier Series Spectrum

  • Since aka_k are complex numbers, we need two plots to show the spectrum:
    1. Magnitude Spectrum: ak|a_k| vs. kk. Shows the strength of each harmonic.
    2. Phase Spectrum: ak\angle a_k vs. kk. Shows the phase (position) of each harmonic.
  • We can write the synthesis equation as: xT0(t)=k=+akej(kω0t+ak)x_{T_{0}}(t) = \sum_{k=-\infty}^{+\infty}|a_{k}|e^{j(k\omega_{0}t+\angle a_{k})}
  • Example 1: x(t)=1+sinω0t+2cosω0t+cos(2ω0t+π4)x(t)=1+\sin{\omega_{0}t}+2\cos{\omega_{0}t}+\cos(2\omega_{0}t+\frac{\pi}{4})
    • a0=1a_0=1
    • a1=112ja_1=1-\frac{1}{2}j, a1=1+12ja_{-1}=1+\frac{1}{2}j (so a±1=52|a_{\pm 1}| = \frac{\sqrt{5}}{2}, a1=atan(1/2)\angle a_1 = -\text{atan}(1/2), a1=atan(1/2)\angle a_{-1} = \text{atan}(1/2))
    • a2=12ej(π/4)a_2=\frac{1}{2}e^{j(\pi/4)}, a2=12ej(π/4)a_{-2}=\frac{1}{2}e^{-j(\pi/4)} (so a±2=12|a_{\pm 2}| = \frac{1}{2}, a2=π/4\angle a_2 = \pi/4, a2=π/4\angle a_{-2} = -\pi/4)
    • ak=0a_k=0 for k3|k|\ge3.
  • Example 2: Antisymmetric Periodic Square Wave (value +1 for 0<t<T0/20 < t < T_0/2, -1 for T0/2<t<0-T_0/2 < t < 0)
    • a0=0a_0 = 0
    • ak=1jπk(1(1)k)={2jπkfor odd k0for even k,k0a_k = \frac{1}{j\pi k}(1-(-1)^k) = \begin{cases} \frac{2}{j\pi k} & \text{for odd } k \\ 0 & \text{for even } k, k \neq 0 \end{cases}
    • This is an odd harmonic signal (only contains odd harmonics).
  • Example 3: Symmetric Periodic Square Wave (value 1 for T0/4<t<T0/4-T_0/4 < t < T_0/4, 0 for T0/4<t<T0/2T_0/4 < |t| < T_0/2, assuming T1=T0/4T_1 = T_0/4 in the slide’s general formula context for pulse width)
image-20250523111800427
  • The slide shows ak={1/2,k=0sin(πk/2)πkk0a_{k}=\begin{cases}1/2,&k=0\\ \frac{\sin(\pi k/2)}{\pi k}&k\ne0\end{cases}
  • This specific formula corresponds to a square wave that is 1 for half its period and 0 for the other half, centered differently or having different height/duty cycle than typical examples.
  • A more standard symmetric square wave (period T0T_0) would have ak=sin(kω0T1)kπ=sin(k2πT0T1)kπa_k = \frac{\sin(k\omega_0 T_1)}{k\pi} = \frac{\sin(k\frac{2\pi}{T_0} T_1)}{k\pi} with 2T12T_1 being the pulse width. The formula on the slide implies T1=T0/4T_1 = T_0/4 and height 1.
  • The phase spectrum is changed dramatically compared to the antisymmetric case due to the shift in the signal’s position.

X. Summary for Evaluating the FS Spectrum

  • If the signal is sinusoidal, use Euler’s formula.

    cosφ=ejφ+ejφ2sinφ=ejφejφ2j\cos \varphi = \frac{e^{j\varphi} + e^{-j\varphi}}{2} \quad \sin \varphi = \frac{e^{j\varphi} - e^{-j\varphi}}{2j}

  • If not sinusoidal, use the analysis equation:

    • a0=1T0T0xT0(t)dta_{0}=\frac{1}{T_{0}}\int_{T_{0}}x_{T_{0}}(t)dt (the average of the signal in one period).
    • ak=1T0T0xT0(t)ejkω0tdta_{k}=\frac{1}{T_{0}}\int_{T_{0}}x_{T_{0}}(t)e^{-jk\omega_{0}t}dt.

XI. Convergence of Fourier Series

  • A square wave (discontinuous) can be constructed by adding “enough” continuous complex exponential functions.

  • Partial Sum: xN(t)k=NNakejkω0tx_{N}(t)\triangleq\sum_{k=-N}^{N}a_{k}e^{jk\omega_{0}t}

  • We want to show limN+xN(t)=x(t)\lim_{N\rightarrow+\infty}x_{N}(t)=x(t).

  • Error Signal: eN(t)xN(t)x(t)e_{N}(t)\triangleq x_{N}(t)-x(t)

  • FS representation converges if limNeN(t)\lim_{N\rightarrow\infty}e_{N}(t) is zero under a certain criterion.

  • Two Convergence Criteria:

    1. Energy Convergence: limNTeN(t)2dt=0\lim_{N\rightarrow\infty}\int_{T}|e_{N}(t)|^{2}dt=0 (the difference signal has zero energy).
    2. Pointwise Convergence: limNeN(t)=0\lim_{N\rightarrow\infty}e_{N}(t)=0 for every tRt\in\mathbb{R}.
    • Pointwise convergence is stronger than energy convergence and implies it.
  • Fourier Series Convergence Theorem #1 (Energy Convergence):

    • If a periodic signal has finite energy over a single period (i.e., Tx(t)2dt<\int_{T}|x(t)|^{2}dt<\infty), then its Fourier series partial sum converges to the signal subject to an error of zero energy.
    • The difference x(t)k=akejkω0tx(t)-\sum_{k=-\infty}^{\infty}a_{k}e^{jk\omega_{0}t}, if existent, must reside on a finite set of time indexes with a finite value.
  • Fourier Series Convergence Theorem #2 (Pointwise Convergence):

    • If a periodic signal satisfies the Dirichlet conditions, then its Fourier series partial sum converges to the signal pointwisely, except at points of discontinuity.
    • At points of discontinuity, the Fourier series converges to the average value of the signal on either side of the discontinuity.
  • Dirichlet Conditions (all three must be satisfied):

    1. x(t)x(t) must be absolutely integrable over a single period: Tx(t)dt<\int_{T}|x(t)|dt<\infty. 绝对可积
    2. x(t)x(t) must have a finite number of maxima(极大值) and minima (极小值) during a single period (finite total variation). 有限个极值点,可以理解为有限次振荡
    3. x(t)x(t) must have a finite number of discontinuities during a single period, and each of these discontinuities must be finite.(所有的间断点都必须是第一类间断点) 有限个第一类间断点
    • Most practical signals (e.g., speech signals, image signals) satisfy all 3 Dirichlet conditions.

XII. Gibbs Phenomenon (or Gibbs Ringing)

  • When approximating a signal with discontinuities using a finite Fourier series sum (xN(t)x_N(t)), ripples appear near the discontinuities.
  • The maximal amplitude of these ripples does not decrease with increasing N. It overshoots by about 9% of the jump.
  • The width of the ripples continuously decreases with increasing N.
  • If N=N=\infty, the ripple width becomes 0, so effectively no ripples are present. However, for any finite N, there is always an interval near the discontinuity where ripples reside.
  • This is due to the nonuniform rate of convergence of the Fourier series near discontinuities.
  • Gibbs phenomenon can be observed in medical images and natural images.

傅里叶级数性质 📝

回顾:傅里叶级数的基本公式

  • 合成方程 (Synthesis Equation):

    xT0(t)=k=+akejkω0tx_{T_{0}}(t)=\sum_{k=-\infty}^{+\infty}a_{k}e^{jk\omega_{0}t}

    • 表明一个周期信号可以表示为傅里叶级数,即与信号相关的谐波关系复指数 (HRCEs) 的线性组合。
  • 分析方程 (Analysis Equation):

    ak=1T0T0xT0(t)ejkω0tdta_{k}=\frac{1}{T_{0}}\int_{T_{0}}x_{T_{0}}(t)e^{-jk\omega_{0}t}dt

    • 用于确定傅里叶级数 (F.S.) 系数,这些系数表示每个谐波分量的强度和位置。

吉布斯现象 (Gibbs Phenomenon)

傅里叶级数的收敛速度不同,在不连续点附近收敛较慢。


傅里叶级数性质概览

理解傅里叶级数和傅里叶变换的性质,有助于推导信号变化时的频谱,或频谱变化时的信号。
主要性质包括:

  1. 线性 (Linearity)
  2. 时移 (Time shift) - 导致线性相位的增加
  3. 时间反转 (Time reversal) - 导致频率反转
  4. 时间尺度变换 (Time scaling) - 导致基频的改变
  5. 乘法 (Multiplication) - 导致卷积
  6. 微分与积分 (Differentiation & integration)
  7. 共轭与对称性 (Conjugacy & Symmetry) - 对于实信号,有助于加速采集
  8. 帕斯瓦尔定理 (Parseval’s theorem) - 傅里叶级数的能量守恒定理

1. 线性 (Linearity)

  • 性质: 若两个周期相同 (T0T_0) 的信号 x(t)x(t)y(t)y(t) 对应的傅里叶级数系数分别为 aka_kbkb_k,则对于任意常数 A 和 B:
    Ax(t)+By(t)F.S.Aak+BbkAx(t)+By(t) \stackrel{F.S.}{\longleftrightarrow} Aa_k + Bb_k
  • 证明:
    1T0T0(Ax(t)+By(t))ejkω0tdt=AT0T0x(t)ejkω0tdt+BT0T0y(t)ejkω0tdt=Aak+Bbk\frac{1}{T_{0}}\int_{T_{0}}(Ax(t)+By(t))e^{-jk\omega_{0}t}dt = \frac{A}{T_{0}}\int_{T_{0}}x(t)e^{-jk\omega_{0}t}dt + \frac{B}{T_{0}}\int_{T_{0}}y(t)e^{-jk\omega_{0}t}dt = Aa_k + Bb_k
  • 意义: 两个信号线性组合的频谱是它们各自频谱的相同线性组合。

2. 时移 (Time Shift)

  • 性质: 若 x(t)F.S.akx(t) \stackrel{F.S.}{\longleftrightarrow} a_k,则:x(tt0)F.S.ejkω0t0akx(t-t_0) \stackrel{F.S.}{\longleftrightarrow} e^{-jk\omega_0 t_0} a_k
  • 意义: 时域的平移导致频域相位的线性变化 (kω0t0-k\omega_0 t_0)。 幅度频谱不变,仅相位频谱改变。
  • 证明: 设 y(t)=x(tt0)y(t) = x(t-t_0),其傅里叶系数为 bkb_k
    bk=1T0T0y(t)ejkω0tdt=1T0T0x(tt0)ejkω0tdtb_k = \frac{1}{T_0}\int_{T_0} y(t)e^{-jk\omega_0 t} dt = \frac{1}{T_0}\int_{T_0} x(t-t_0)e^{-jk\omega_0 t} dt
    u=tt0u = t-t_0,则 t=u+t0t = u+t_0
    bk=1T0T0x(u)ejkω0(u+t0)du=ejkω0t0[1T0T0x(u)ejkω0udu]=ejkω0t0akb_k = \frac{1}{T_0}\int_{T_0} x(u)e^{-jk\omega_0 (u+t_0)} du = e^{-jk\omega_0 t_0} \left[\frac{1}{T_0}\int_{T_0} x(u)e^{-jk\omega_0 u} du\right] = e^{-jk\omega_0 t_0} a_k

3. 时间尺度变换 (Time Scaling)

  • 性质: 时间尺度变换不改变傅里叶级数的系数/频谱。

    x(at)=k=+akejk(aω0)tx(at) = \sum_{k=-\infty}^{+\infty} a_k e^{jk(a\omega_0)t}

  • 注意: 尽管傅里叶级数系数 aka_k 不变,但谐波关系复指数集合的基频 ω0\omega_0 会变为 aω0a\omega_0
  • 意义: 对信号的压缩或拉伸不改变傅里叶级数频谱本身,仅改变基频。

4. 时间反转 (Time Reversal)

  • 性质: 若 x(t)F.S.akx(t) \stackrel{F.S.}{\longleftrightarrow} a_k,则:x(t)F.S.akx(-t) \stackrel{F.S.}{\longleftrightarrow} a_{-k}
  • 证明: 设 y(t)=x(t)y(t) = x(-t),其傅里叶系数为 bkb_k
    bk=1T00T0x(t)ejkω0tdtb_k = \frac{1}{T_0}\int_{0}^{T_0} x(-t)e^{-jk\omega_0 t} dt
    u=tu = -t,则 du=dtdu = -dt。当 t=0,u=0t=0, u=0; 当 t=T0,u=T0t=T_0, u=-T_0
    bk=1T00T0x(u)ej(k)ω0ud(u)=1T0T00x(u)ej(k)ω0udu=akb_k = \frac{1}{T_0}\int_{0}^{-T_0} x(u)e^{-j(-k)\omega_0 u} d(-u) = \frac{1}{T_0}\int_{-T_0}^{0} x(u)e^{-j(-k)\omega_0 u} du = a_{-k}
  • 推论:
    • x(t)x(t) 是偶对称 (x(t)=x(t)x(t)=x(-t)),则 aka_k 也是偶对称 (ak=aka_k = a_{-k})。
    • x(t)x(t) 是奇对称 (x(t)=x(t)x(t)=-x(-t)),则 aka_k 也是奇对称 (ak=aka_k = -a_{-k})。
  • 意义: 信号反转会导致频谱也反转。

5. 乘法 (Multiplication)

  • 性质: 若两个周期相同 (T0T_0) 的信号 x(t)F.S.akx(t) \stackrel{F.S.}{\longleftrightarrow} a_ky(t)F.S.bky(t) \stackrel{F.S.}{\longleftrightarrow} b_k,则:

    x(t)y(t)F.S.l=albkl=akbkx(t)y(t) \stackrel{F.S.}{\longleftrightarrow} \sum_{l=-\infty}^{\infty} a_l b_{k-l} = a_k * b_k

  • 证明: 设 x(t)y(t)x(t)y(t) 的傅里叶系数为 ckc_k
    ck=1T0T0x(t)y(t)ejkω0tdtc_k = \frac{1}{T_0}\int_{T_0} x(t)y(t)e^{-jk\omega_0 t} dt
    x(t)=k1ak1ejk1ω0tx(t) = \sum_{k_1} a_{k_1} e^{jk_1\omega_0 t}y(t)=k2bk2ejk2ω0ty(t) = \sum_{k_2} b_{k_2} e^{jk_2\omega_0 t} 代入:
    ck=1T0T0(k1ak1ejk1ω0t)(k2bk2ejk2ω0t)ejkω0tdtc_k = \frac{1}{T_0}\int_{T_0} \left(\sum_{k_1} a_{k_1} e^{jk_1\omega_0 t}\right) \left(\sum_{k_2} b_{k_2} e^{jk_2\omega_0 t}\right) e^{-jk\omega_0 t} dt
    ck=k1ak1k2bk2[1T0T0ej(k1+k2k)ω0tdt]c_k = \sum_{k_1} a_{k_1} \sum_{k_2} b_{k_2} \left[\frac{1}{T_0}\int_{T_0} e^{j(k_1+k_2-k)\omega_0 t} dt\right]
    积分项仅当 k1+k2k=0k_1+k_2-k=0 (即 k1+k2=kk_1+k_2=k) 时为 1,否则为 0。这可以用 δ[k1+k2k]\delta[k_1+k_2-k] 表示。
    ck=k1=k2=ak1bk2δ[k1+k2k]c_k = \sum_{k_1=-\infty}^{\infty} \sum_{k_2=-\infty}^{\infty} a_{k_1} b_{k_2} \delta[k_1+k_2-k]
    ck=k1=ak1bkk1=akbkc_k = \sum_{k_1=-\infty}^{\infty} a_{k_1} b_{k-k_1} = a_k * b_k
  • 意义: 两个相同周期信号的乘积,其傅里叶级数频谱是两个原始频谱的卷积。

6. 微分与积分 (Differentiation & Integration)

  • 微分性质: 若 x(t)F.S.akx(t) \stackrel{F.S.}{\longleftrightarrow} a_k,则:dx(t)dtF.S.jkω0ak\frac{dx(t)}{dt} \stackrel{F.S.}{\longleftrightarrow} jk\omega_0 a_k
    • 可以用 dx(t)dt=limΔt0x(t+Δt)x(t)Δt \frac{dx(t)}{dt} = \lim_{\Delta t\rightarrow0}\frac{x(t+\Delta t)-x(t)}{\Delta t} 来证明。
  • 积分性质: 若 x(t)F.S.akx(t) \stackrel{F.S.}{\longleftrightarrow} a_ka0=0a_0=0 (即信号直流分量为0),则:tx(τ)dτF.S.akjkω0\int_{-\infty}^{t} x(\tau)d\tau \stackrel{F.S.}{\longleftrightarrow} \frac{a_k}{jk\omega_0} (对于 k0k \neq 0)
    • 如果 a00a_0 \neq 0,则 tx(τ)dτ\int_{-\infty}^{t} x(\tau)d\tau 在每个周期后会累积一个非零量,导致积分后的信号非周期性,积分性质不适用。
  • 意义: 信号的微分/积分导致其频谱乘以/除以 jkω0jk\omega_0
  • 二阶导数频谱: d2x(t)dt2F.S.(jkω0)2ak=k2ω02ak\frac{d^2x(t)}{dt^2} \stackrel{F.S.}{\longleftrightarrow} (jk\omega_0)^2 a_k = -k^2\omega_0^2 a_k (通过连续应用微分性质)

7. 共轭与对称性 (Conjugacy & Symmetry)

  • 共轭性质: 若 x(t)F.S.akx(t) \stackrel{F.S.}{\longleftrightarrow} a_k,则:x(t)F.S.akx^*(t) \stackrel{F.S.}{\longleftrightarrow} a_{-k}^*
    • 证明: 设 x(t)x^*(t) 的傅里叶系数为 bkb_k
      bk=1T0T0x(t)ejkω0tdt=(1T0T0x(t)ejkω0tdt)=(1T0T0x(t)ej(k)ω0tdt)=akb_k = \frac{1}{T_0}\int_{T_0} x^*(t)e^{-jk\omega_0 t} dt = \left(\frac{1}{T_0}\int_{T_0} x(t)e^{jk\omega_0 t} dt\right)^* = \left(\frac{1}{T_0}\int_{T_0} x(t)e^{-j(-k)\omega_0 t} dt\right)^* = a_{-k}^*
  • 重要推论:
    • x(t)x(t) 是实信号,即 x(t)=x(t)x(t) = x^*(t),则 ak=aka_k = a_{-k}^*
      • 这意味着 Re{ak}=Re{ak}Re\{a_k\} = Re\{a_{-k}\} (实部偶对称) 且 Im{ak}=Im{ak}Im\{a_k\} = -Im\{a_{-k}\} (虚部奇对称)。这被称为共轭对称
    • x(t)x(t)实且偶信号:其频谱 aka_k 也是实且偶的 (Im{ak}=0Im\{a_k\}=0, ak=aka_k=a_{-k})。
      x(t)=a0+2k=1akcos(kω0t)x(t) = a_0 + 2\sum_{k=1}^{\infty} a_k \cos(k\omega_0 t)。这表明谐波相关的余弦函数是周期实偶信号的构建模块。
    • x(t)x(t)实且奇信号:其频谱 aka_k纯虚且奇的 (Re{ak}=0Re\{a_k\}=0, ak=aka_k=-a_{-k})。
      x(t)=2k=1(jak)sin(kω0t)x(t) = 2\sum_{k=1}^{\infty} (ja_k) \sin(k\omega_0 t) (注意这里的 aka_k 是纯虚数,所以 jakja_k 是实数)。这表明谐波相关的正弦函数是周期实奇信号的构建模块。
    • 基于实信号的奇偶分解,可以得出结论:几乎所有实信号都可以分解为谐波相关的正弦和余弦信号的线性组合。

8. 帕斯瓦尔定理 (Parseval’s Theorem)

  • 定理: 若 x(t)F.S.akx(t) \stackrel{F.S.}{\longleftrightarrow} a_k,则:1T0T0x(t)2dt=k=ak2\frac{1}{T_0}\int_{T_0} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2

  • 意义: 周期信号在一个周期内的平均功率等于其傅里叶级数系数在整个频域上的能量

    • 或者说周期信号的总平均功率等于其所有谐波分量平均功率之和。
  • 证明思路:
    1T0T0x(t)2dt=1T0T0x(t)x(t)dt\frac{1}{T_0}\int_{T_0} |x(t)|^2 dt = \frac{1}{T_0}\int_{T_0} x(t)x^*(t) dt
    x(t)=lalejlω0tx(t) = \sum_{l} a_l e^{jl\omega_0 t}x(t)=mamejmω0tx^*(t) = \sum_{m} a_{-m}^* e^{-jm\omega_0 t} 代入,然后利用复指数的正交性,可以得到:
    (akak)k=0=(l=ala(kl))k=0=l=alal=l=al2(a_k * a_{-k}^*)|_{k=0} = (\sum_{l=-\infty}^{\infty} a_l a_{-(k-l)}^*) |_{k=0} = \sum_{l=-\infty}^{\infty} a_l a_l^* = \sum_{l=-\infty}^{\infty} |a_l|^2 (注意这里 aka_{-k}^* 表示 aka_k 的共轭反转序列,使用了傅里叶级数的共轭性质)。


练习中的关键点

  • 对于信号 g(t)=x(att0),T0=4g(t)=x(at-t_0), T_0 = 4:可以看作先进行时间平移 x(ut0)x(u-t_0),其中 u=atu=at,再进行时间尺度变换。或者,更常见的处理方式是 g(t)=x(a(tt0/a))g(t) = x(a(t-t_0/a))
    • 如果考虑 g(t)=x(2t1)g(t)=x(2t-1)
      • y(t)=x(t1)y(t) = x(t-1),则 Yk=akejkω0=akejkπ2Y_k = a_k e^{-jk\omega_0} = a_k e^{-jk\frac{\pi}{2}}
      • 然后 g(t)=y(2t)g(t) = y(2t)。时间尺度变换不改变系数,但基频变为 2ω02\omega_0。所以 g(t)g(t) 的系数仍然是 akejkπ2a_k e^{-jk\frac{\pi}{2}},但其展开式为 akejkπ2ejk(2ω0)t\sum a_k e^{-jk\frac{\pi}{2}} e^{jk(2\omega_0)t}
    • 对于 g(t)=x(2t1)g(t)=x(-2t-1)
      • 先令 y(t)=x(t1)y(t)=x(t-1), Yk=akejkω0=akejkπ2Y_k = a_k e^{-jk\omega_0} = a_k e^{-jk\frac{\pi}{2}}
      • 再令 z(t)=y(t)z(t)=y(-t), Zk=Yk=akejkπ2Z_k = Y_{-k} = a_{-k}e^{jk\frac{\pi}{2}}
      • 最后 g(t)=z(2t)g(t)=z(2t), Gk=Zk=akejkπ2G_k = Z_k = a_{-k}e^{jk\frac{\pi}{2}},基频变为 ω=2ω0=π\omega = 2\omega_0 = \pi
image-20250522190948593
  • 一个奇对称的实信号 x(t)x(t) (如图),其傅里叶系数 aka_k 是纯虚且奇对称的。
  • 如果 x(t)x(t) 的傅里叶系数是 aka_k,则 x(t)x'(t) 的傅里叶系数 bk=jkω0akb_k = jk\omega_0 a_k。如果 aka_k 是纯虚且奇对称,则 jkω0akjk\omega_0 a_k 将会是实且偶对称的。

Bonus 问题解答

  • 问题: 假设要重建的图像是实值信号。如果只采集了一半的频谱,如何无损重建图像?直接使用综合方程会产生错误,如何无损重建?
  • 简要回答:
    由于图像是实值信号,其傅里叶频谱具有共轭对称性 (A(kx,ky)=A(kx,ky)A(k_x, k_y) = A^*(-k_x, -k_y))。 如果只采集了一半的频谱(例如,对于正频率部分),另一半频谱可以通过共轭对称性推算出来。获得完整的频谱信息后,就可以通过傅里叶逆变换(对于图像是二维傅里叶逆变换,类似综合方程)无损重建图像。直接使用不完整的(只有一半的)频谱进行逆变换当然会出错。

I. Eigenfunction Properties of LTI Systems

A. Definition

  • An eigenfunction (特征函数) of an LTI system is an input signal that produces an output signal that is simply the input multiplied by a constant.
  • If x(t)h(t)=λx(t)x(t)*h(t)=\lambda x(t), then x(t)x(t) is an eigenfunction of the system h(t)h(t), and λ\lambda is the eigenvalue (特征值) associated with it.

B. Notes on Eigenfunctions

  • For an eigenfunction input, predicting the output is a simple scaling operation, which is much easier than convolution.
  • Most input signals are NOT eigenfunctions.
  • Different LTI systems generally have different eigenfunctions.

C. Complex Exponentials as Eigenfunctions

A crucial property is that complex exponentials are ALWAYS eigenfunctions of any LTI system.

Proof:

  • Let the input be x(t)=ejωtx(t)=e^{j\omega t}. The output y(t)y(t) is given by the convolution integral:

    y(t)=x(tτ)h(τ)dτ=ejω(tτ)h(τ)dτ=ejωtejωτh(τ)dτy(t) = \int_{-\infty}^{\infty}x(t-\tau)h(\tau)d\tau = \int_{-\infty}^{\infty}e^{j\omega(t-\tau)}h(\tau)d\tau = e^{j\omega t}\int_{-\infty}^{\infty}e^{-j\omega\tau}h(\tau)d\tau

  • Since the integral ejωτh(τ)dτ\int_{-\infty}^{\infty}e^{-j\omega\tau}h(\tau)d\tau does not depend on tt, we can define it as H(jω)H(j\omega).

  • So, the output is y(t)=H(jω)ejωty(t) = H(j\omega)e^{j\omega t}.

  • Here, H(jω)ejωτh(τ)dτH(j\omega) \triangleq \int_{-\infty}^{\infty}e^{-j\omega\tau}h(\tau)d\tau is the eigenvalue associated with the eigenfunction ejωte^{j\omega t}.

  • This eigenvalue, H(jω)H(j\omega), is known as the frequency response of the LTI system and depends on frequency ω\omega and the system’s impulse response h(τ)h(\tau), but not on time tt.


II. Frequency Domain Analysis of LTI Systems

A. Response to Periodic Signals

  • If a periodic input signal xT0(t)x_{T_0}(t) is represented by its Fourier series:

xT0(t)=k=+akejkω0tx_{T_{0}}(t)=\sum_{k=-\infty}^{+\infty}a_{k}e^{jk\omega_{0}t}

where ejkω0te^{jk\omega_{0}t} are eigenfunctions of the LTI system.

  • The response of the LTI system T{}T\{\cdot\} to this arbitrary periodic signal is:

y(t)=T{xT0(t)}=T{k=akejkω0t}y(t) = T\{x_{T_0}(t)\} = T\{\sum_{k=-\infty}^{\infty}a_{k}e^{jk\omega_{0}t}\}

  • Using linearity and the eigenfunction property T{ejkω0t}=H(jkω0)ejkω0tT\{e^{jk\omega_{0}t}\} = H(jk\omega_0)e^{jk\omega_{0}t}:

    y(t)=k=akT{ejkω0t}=k=ak[H(jkω0)ejkω0t]=k=[akH(jkω0)]ejkω0ty(t) = \sum_{k=-\infty}^{\infty}a_{k}T\{e^{jk\omega_{0}t}\} = \sum_{k=-\infty}^{\infty}a_{k}[H(jk\omega_{0})e^{jk\omega_{0}t}] = \sum_{k=-\infty}^{\infty}[a_{k}H(jk\omega_{0})]e^{jk\omega_{0}t}

  • If we let bk=akH(jkω0)b_k = a_k H(jk\omega_0), then the output is also a periodic signal with the same period:

    y(t)=k=bkejkω0ty(t) = \sum_{k=-\infty}^{\infty}b_{k}e^{jk\omega_{0}t}

  • The output spectrum is bk=akH(jkω0)b_k = a_k H(jk\omega_0).

  • H(jkω0)H(jk\omega_0) describes how the system modifies each harmonic component of the input signal. It’s a sampled version of the continuous frequency response H(jω)H(j\omega) at discrete harmonic frequencies ω=kω0\omega = k\omega_0.

B. Two Methods to Analyze an LTI System

  1. Time Domain:
    • Input: x(t)=x(τ)δ(tτ)dτx(t)=\int_{-\infty}^{\infty}x(\tau)\delta(t-\tau)d\tau (sum of impulses)
    • System: Impulse response h(t)h(t)
    • Output: y(t)=x(τ)h(tτ)dτy(t)=\int_{-\infty}^{\infty}x(\tau)h(t-\tau)d\tau (convolution)
  2. Frequency Domain (for periodic inputs):
    • Input: x(t)=k=akejkω0tx(t)=\sum_{k=-\infty}^{\infty}a_{k}e^{jk\omega_{0}t} (sum of exponentials)
    • System: Frequency response H(jω)=ejωτh(τ)dτH(j\omega)=\int_{-\infty}^{\infty}e^{-j\omega\tau}h(\tau)d\tau, sampled at kω0H(jkω0)k\omega_0 \Rightarrow H(jk\omega_0)
    • Output: y(t)=k=(akH(jkω0))ejkω0ty(t)=\sum_{k=-\infty}^{\infty}(a_{k}H(jk\omega_{0}))e^{jk\omega_{0}t} (sum of exponential responses)

C. Rationale for Frequency-Domain Analysis

  1. Computational Advantages: Multiplication in the frequency domain is often simpler than convolution in the time domain.
    • Example: Input x(t)=cos(23t)x(t)=\cos(\frac{2}{3}t) and impulse response h(t)=sin(t)πth(t)=\frac{\sin(t)}{\pi t}.
      • The frequency response is H(jω)=ejωτsin(τ)πτdτ={1,if ω<10,otherwiseH(j\omega)=\int_{-\infty}^{\infty}e^{-j\omega\tau}\frac{\sin(\tau)}{\pi\tau}d\tau = \begin{cases}1, & \text{if } |\omega|<1 \\ 0, & \text{otherwise}\end{cases} (This is a standard Fourier Transform pair for an ideal low-pass filter scaled).
      • For x(t)=cos(23t)x(t)=\cos(\frac{2}{3}t), ω0=23\omega_0 = \frac{2}{3}. The Fourier series coefficients aka_k are non-zero only for k=1k=-1 and k=1k=1 (specifically, a1=a1=1/2a_1=a_{-1}=1/2).
      • The relevant system responses are at H(j123)=H(j23)H(j1\cdot\frac{2}{3}) = H(j\frac{2}{3}) and H(j(1)23)=H(j23)H(j(-1)\cdot\frac{2}{3}) = H(-j\frac{2}{3}).
      • Since ±23<1|\pm \frac{2}{3}| < 1, H(j23)=1H(j\frac{2}{3})=1 and H(j23)=1H(-j\frac{2}{3})=1.
      • The output spectrum bk=akH(jkω0)b_k = a_k H(jk\omega_0) will be b1=a11=1/2b_1 = a_1 \cdot 1 = 1/2 and b1=a11=1/2b_{-1} = a_{-1} \cdot 1 = 1/2.
      • Thus, y(t)=x(t)y(t)=x(t).
  2. Critical Insights: It shows how the system modifies each harmonic.
    • If H(jkω0)>1|H(jk\omega_{0})| > 1, the kthk^{th} harmonic is strengthened.
    • If H(jkω0)<1|H(jk\omega_{0})| < 1, the kthk^{th} harmonic is attenuated.
    • This leads to the concept of filtering.

III. Filtering (滤波)

A. Definition

Filtering is essentially spectral editing. An LTI filter is an LTI system whose frequency response H(jω)H(j\omega) is shaped to change the input spectrum by multiplication (bk=akH(jkω0)b_k = a_k H(jk\omega_0)).

  • Example: Lowpass Filter (低通滤波器)
    • H(jω)=1H(j\omega) = 1 for ω<ωc|\omega| < \omega_c (Passband)
    • H(jω)=0H(j\omega) = 0 for ω>ωc|\omega| > \omega_c (Stopband)
    • For harmonics kω0k\omega_0 within (ωc,ωc)(-\omega_c, \omega_c), aka_k is preserved (bk=akb_k=a_k).
    • For harmonics outside this range, aka_k is suppressed (bk=0b_k=0).
    • Low-frequency harmonics are preserved; high-frequency ones are eliminated.

B. Types of LTI Filters

  1. Frequency-selective filters (频率选择性滤波器) or ideal filters (理想滤波器): Pass certain frequencies and completely eliminate others.
    • Ideal Lowpass Filter (低通): Kills high frequencies. H(jω)=1H(j\omega)=1 for ω<ωc|\omega|<\omega_c, 0 otherwise.
    • Ideal Highpass Filter (高通): Kills low frequencies. H(jω)=1H(j\omega)=1 for ω>ωc|\omega|>\omega_c, 0 otherwise. (The image shows passband outside (ωc,ωc)(-\omega_c, \omega_c) but it should typically be symmetric, passing ω>ωc|\omega| > \omega_c).
    • Ideal Bandpass Filter (带通): Passes a specific band of frequencies. H(jω)=1H(j\omega)=1 for ωc1<ω<ωc2\omega_{c1}<|\omega|<\omega_{c2}, 0 otherwise.
  2. Frequency-shaping filters (频率成形滤波器): Change the shape of the input spectrum without completely passing or killing harmonics.
    • Example: Differentiator (y(t)=dx(t)dty(t) = \frac{dx(t)}{dt}).
      • Its frequency response is H(jω)=jωH(j\omega) = j\omega.
      • Magnitude: H(jω)=ω|H(j\omega)| = |\omega|.
      • High-frequency components are strengthened, and low-frequency components are suppressed.

C. Filter Questions

  • Is an edge detector a low-pass or high-pass filter?
    • Edges are determined by high-frequency harmonics. Since edge detectors strengthen these, they are high-pass filters.
  • What filter to use to keep only harmonics within 10-500Hz for an EMG signal?
    • This requires a bandpass filter because it preserves a specific band of frequencies, eliminating those below 10Hz and above 500Hz.

Looking at this table of properties for continuous-time Fourier series, I’ll convert it to markdown format with proper LaTeX formula syntax:

Property Section Periodic Signal Fourier Series Coefficients
x(t)x(t) Periodic with period TT and
y(t)y(t) fundamental frequency ω0=2π/T\omega_0 = 2\pi/T
aka_k
bkb_k
Linearity 3.5.1 Ax(t)+By(t)Ax(t) + By(t) Aak+BbkAa_k + Bb_k
Time Shifting 3.5.2 x(tt0)x(t - t_0) akejkω0t0=akejk(2π/T)t0a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}
Frequency Shifting ejMω0t(=ejM(2π/T)t)x(t)e^{jM\omega_0 t} (= e^{jM(2\pi/T)t})x(t) akMa_{k-M}
Conjugation 3.5.6 x(t)x^*(t) aka^*_{-k}
Time Reversal 3.5.3 x(t)x(-t) aka_{-k}
Time Scaling 3.5.4 x(αt),α>0x(\alpha t), \alpha > 0 (periodic with period T/αT/\alpha) aka_k
Periodic Convolution Tx(τ)y(tτ)dτ\int_T x(\tau)y(t - \tau)d\tau TakbkTa_k b_k
Multiplication 3.5.5 x(t)y(t)x(t)y(t) akbk=l=albkla_k * b_k = \sum_{l=-\infty}^{\infty} a_l b_{k-l}
Differentiation dx(t)dt\frac{dx(t)}{dt} jkω0ak=jk2πTakjk\omega_0 a_k = jk\frac{2\pi}{T}a_k
Integration tx(t)dt\int_{-\infty}^t x(t)dt (finite valued and
periodic only if a0=0a_0 = 0)
(1jkω0)ak=(1jk(2π/T))ak\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k
Conjugate Symmetry for
Real Signals
3.5.6 x(t)x(t) real ak=aka_k = a^*_{-k}
Re{ak}=Re{ak}\mathfrak{Re}\{a_k\} = \mathfrak{Re}\{a^*_{-k}\}
Im{ak}=Im{ak}\mathfrak{Im}\{a_k\} = -\mathfrak{Im}\{a_{-k}\}
$
Real and Even Signals 3.5.6 x(t)x(t) real and even aka_k real and even
Real and Odd Signals 3.5.6 x(t)x(t) real and odd aka_k purely imaginary and odd
Even-Odd Decomposition
of Real Signals
xe(t)=Ev{x(t)}x_e(t) = \mathcal{E}v\{x(t)\} [x(t)x(t) real]
xo(t)=Od{x(t)}x_o(t) = \mathcal{O}d\{x(t)\} [x(t)x(t) real]
Re{ak}\mathfrak{Re}\{a_k\}
jIm{ak}j\mathfrak{Im}\{a_k\}

Parseval’s Relation for Periodic Signals

1TTx(t)2dt=k=ak2\frac{1}{T}\int_T |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2

0%