Chapter4 Continuous-time Fourier Transform

Chapter4 Continuous-time Fourier Transform

IV. From Fourier Series to Fourier Transform ๐ŸŒ‰

A. Motivation

Fourier series is powerful for periodic signals, but most real-world signals are non-periodic. We need a way to analyze these non-periodic signals in the frequency domain.

B. The Basic Idea

A non-periodic signal can be viewed as a periodic signal with an infinite period (Tโ†’โˆžT \rightarrow \infty).

  • As TT increases for a sequence of periodic signals (each replicating a finite-duration aperiodic signal x(t)x(t) within its period), the periodic signals converge to the non-periodic signal x(t)x(t).
  • Correspondingly, their spectra (which are line spectra) should converge to the spectrum of the non-periodic signal. As Tโ†’โˆžT \rightarrow \infty, the fundamental frequency ฯ‰0=2ฯ€/Tโ†’0\omega_0 = 2\pi/T \rightarrow 0, meaning the lines in the spectrum become infinitely close, forming a continuous spectrum.
image-20250608144448966

C. Deriving the Fourier Transform

image-20250608144518132

Step 1: Construct a periodic signal x~T(t)\tilde{x}_T(t)

  • Let x(t)x(t) be a non-periodic signal such that x(t)=0x(t)=0 for โˆฃtโˆฃ>T1|t|>T_1.
  • Construct a periodic signal x~T(t)\tilde{x}_T(t) with period T>2T1T > 2T_1, such that x~T(t)=x(t)\tilde{x}_T(t) = x(t) for โˆฃtโˆฃ<T/2|t| < T/2.
  • Then, limโกTโ†’โˆžx~T(t)=x(t)\lim_{T\rightarrow\infty}\tilde{x}_{T}(t)=x(t).
  • Since x~T(t)\tilde{x}_T(t) is periodic (with ฯ‰0=2ฯ€/T\omega_0 = 2\pi/T), its Fourier series coefficients are:

    ak=1Tโˆซโˆ’T/2T/2x~T(t)eโˆ’jkฯ‰0tdta_k = \frac{1}{T}\int_{-T/2}^{T/2}\tilde{x}_{T}(t)e^{-jk\omega_{0}t}dt

  • And the series is x~T(t)=โˆ‘k=โˆ’โˆžโˆžakejkฯ‰0t\tilde{x}_{T}(t)=\sum_{k=-\infty}^{\infty}a_{k}e^{jk\omega_{0}t}.

Step 2: Derive the Fourier Transform Analysis Equation

  • From the coefficient formula:

    Tak=โˆซโˆ’T/2T/2x~T(t)eโˆ’jkฯ‰0tdtTa_k = \int_{-T/2}^{T/2}\tilde{x}_{T}(t)e^{-jk\omega_{0}t}dt

  • Since x~T(t)=x(t)\tilde{x}_T(t) = x(t) in the interval [โˆ’T/2,T/2][-T/2, T/2] when Tโ†’โˆžT \to \infty, we have the following conclusion when Tโ†’โˆžT \to \infty :

    Tak=โˆซโˆ’T2T2x(t)eโˆ’jkฯ‰0tdt=โˆซโˆ’โˆžโˆžx(t)eโˆ’jkฯ‰0tdtTa_k = \int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)e^{-jk\omega_{0}t}dt = \int_{-\infty}^{\infty}x(t)e^{-jk\omega_{0}t}dt

  • Letโ€™s define X(jฯ‰)โ‰œโˆซโˆ’โˆžโˆžx(t)eโˆ’jฯ‰tdtX(j\omega) \triangleq \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt as the Fourier Transform of x(t)x(t).

  • Then, Tak=X(jฯ‰)โˆฃฯ‰=kฯ‰0Ta_k = X(j\omega)|_{\omega=k\omega_0}.

  • The quantity TakTa_k represents samples of the envelope X(jฯ‰)X(j\omega). As Tโ†’โˆžT \rightarrow \infty, ฯ‰0โ†’0\omega_0 \rightarrow 0, and the discrete samples kฯ‰0k\omega_0 become a continuous variable ฯ‰\omega.

  • Thus, as Tโ†’โˆžT \rightarrow \infty, Takโ†’X(jฯ‰)Ta_k \rightarrow X(j\omega), which is the spectrum of the non-periodic signal x(t)x(t).

  • The analysis equation of Fourier Transform is:

X(jฯ‰)=โˆซโˆ’โˆžโˆžx(t)eโˆ’jฯ‰tdtX(j\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt

Step 3: Derive the Fourier Transform Synthesis Equation

  • Start with the Fourier series for x~T(t)\tilde{x}_T(t):

    x~T(t)=โˆ‘k=โˆ’โˆžโˆžakejkฯ‰0t\tilde{x}_{T}(t)=\sum_{k=-\infty}^{\infty}a_{k}e^{jk\omega_{0}t}

  • Substitute ak=1TX(jkฯ‰0)a_k = \frac{1}{T}X(jk\omega_0):

    x~T(t)=โˆ‘k=โˆ’โˆžโˆž1TX(jkฯ‰0)ejkฯ‰0t\tilde{x}_{T}(t)=\sum_{k=-\infty}^{\infty}\frac{1}{T}X(jk\omega_{0})e^{jk\omega_{0}t}

  • Since ฯ‰0=2ฯ€/T\omega_0 = 2\pi/T, we have 1/T=ฯ‰0/(2ฯ€)1/T = \omega_0/(2\pi):

    x~T(t)=12ฯ€โˆ‘k=โˆ’โˆžโˆžX(jkฯ‰0)ejkฯ‰0tฯ‰0\tilde{x}_{T}(t) = \frac{1}{2\pi}\sum_{k=-\infty}^{\infty}X(jk\omega_{0})e^{jk\omega_{0}t}\omega_{0}

  • This sum can be seen as an approximation of an integral. Each term X(jkฯ‰0)ejkฯ‰0tฯ‰0X(jk\omega_{0})e^{jk\omega_{0}t}\omega_{0} represents the area of a rectangle of height X(jkฯ‰0)ejkฯ‰0tX(jk\omega_{0})e^{jk\omega_{0}t} and width ฯ‰0\omega_0.

    • Actually this fits the definition method of Riemann Integral.
  • As Tโ†’โˆžT \rightarrow \infty, ฯ‰0โ†’0\omega_0 \rightarrow 0, and x~T(t)โ†’x(t)\tilde{x}_T(t) \rightarrow x(t). The sum becomes an integral:

    x(t)=limโกฯ‰0โ†’012ฯ€โˆ‘k=โˆ’โˆžโˆžX(jkฯ‰0)ejkฯ‰0tฯ‰0=12ฯ€โˆซโˆ’โˆžโˆžX(jฯ‰)ejฯ‰tdฯ‰x(t) = \lim_{\omega_0 \rightarrow 0} \frac{1}{2\pi}\sum_{k=-\infty}^{\infty}X(jk\omega_{0})e^{jk\omega_{0}t}\omega_{0} = \frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}d\omega

    This is the synthesis equation (Inverse Fourier Transform).

Summary of Derivation:

  1. Given a non-periodic x(t)x(t) (compactly supported, though this can be relaxed in formal proof), construct periodic x~T(t)\tilde{x}_T(t) such that limโกTโ†’โˆžx~T(t)=x(t)\lim_{T\rightarrow\infty}\tilde{x}_{T}(t)=x(t).
  2. Show that as Tโ†’โˆžT\rightarrow\infty, Takโ†’X(jฯ‰)โ‰œโˆซโˆ’โˆžโˆžx(t)eโˆ’jฯ‰tdtTa_k \rightarrow X(j\omega) \triangleq \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt. Define X(jฯ‰)X(j\omega) as the spectrum of x(t)x(t).
  3. Show that as Tโ†’โˆžT\rightarrow\infty, โˆ‘akejkฯ‰0t\sum a_k e^{jk\omega_0 t} converges to 12ฯ€โˆซX(jฯ‰)ejฯ‰tdฯ‰\frac{1}{2\pi}\int X(j\omega)e^{j\omega t}d\omega. Thus, x(t)=12ฯ€โˆซX(jฯ‰)ejฯ‰tdฯ‰x(t) = \frac{1}{2\pi}\int X(j\omega)e^{j\omega t}d\omega is the synthesis equation.

V. Fourier and Inverse Fourier Transforms ๐Ÿ”„

The Fourier Transform pair is defined as:

  • Fourier Transform (Analysis Equation):

    X(jฯ‰)=F{x(t)}=โˆซโˆ’โˆžโˆžx(t)eโˆ’jฯ‰tdtX(j\omega) = \mathfrak{F}\{x(t)\} = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt

    • This transforms the signal x(t)x(t) into its spectrum X(jฯ‰)X(j\omega).
  • Inverse Fourier Transform (Synthesis Equation):

    x(t)=Fโˆ’1{X(jฯ‰)}=12ฯ€โˆซโˆ’โˆžโˆžX(jฯ‰)ejฯ‰tdฯ‰x(t) = \mathfrak{F}^{-1}\{X(j\omega)\} = \frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}d\omega

    • This synthesizes the signal x(t)x(t) from its spectrum X(jฯ‰)X(j\omega).
  • There is a notable symmetry between the transform and its inverse.

Comparison with Fourier Series:

Synthesis Equations:

  • Periodic: xT0(t)=โˆ‘k=โˆ’โˆž+โˆžakejkฯ‰0tx_{T_{0}}(t)=\sum_{k=-\infty}^{+\infty}a_{k}e^{jk\omega_{0}t} (linear combination of harmonically related complex exponentials (HRCEs) with fundamental frequency ฯ‰0\omega_0).
  • Non-periodic: x(t)=12ฯ€โˆซโˆ’โˆžโˆžX(jฯ‰)ejฯ‰tdฯ‰x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}d\omega (linear combination of HRCEs with an infinitely small fundamental frequency).

Analysis Equations:

  • Periodic: ak=1T0โˆซT0xT0(t)eโˆ’jkฯ‰0tdta_{k}=\frac{1}{T_{0}}\int_{T_{0}}x_{T_{0}}(t)e^{-jk\omega_{0}t}dt (generates a discrete spectrum).
  • Non-periodic: X(jฯ‰)=โˆซโˆ’โˆžโˆžx(t)eโˆ’jฯ‰tdtX(j\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt (generates a continuous spectrum as โ€œeffective fundamental frequencyโ€ is dฯ‰โ†’0d\omega \rightarrow 0).

VI. Examples of Fourier Transforms ๐Ÿงฎ

Example 1: x(t)=eโˆ’atu(t)x(t)=e^{-at}u(t), for a>0a>0

X(jฯ‰)=โˆซโˆ’โˆžโˆžeโˆ’atu(t)eโˆ’jฯ‰tdt=โˆซ0โˆžeโˆ’(a+jฯ‰)tdt=[eโˆ’(a+jฯ‰)tโˆ’(a+jฯ‰)]0โˆž=0โˆ’1โˆ’(a+jฯ‰)=1a+jฯ‰\begin{align} X(j\omega) &= \int_{-\infty}^{\infty}e^{-at}u(t)e^{-j\omega t}dt = \int_{0}^{\infty}e^{-(a+j\omega)t}dt \\ &= \left[\frac{e^{-(a+j\omega)t}}{-(a+j\omega)}\right]_{0}^{\infty} = 0 - \frac{1}{-(a+j\omega)} = \frac{1}{a+j\omega} \end{align}

  • Magnitude: โˆฃX(jฯ‰)โˆฃ=1a2+ฯ‰2|X(j\omega)| = \frac{1}{\sqrt{a^2+\omega^2}}.
  • Phase: โˆ X(jฯ‰)=โˆ’atan(ฯ‰a)\angle X(j\omega) = -\text{atan}(\frac{\omega}{a}).
  • Note: X(j0)=โˆซโˆ’โˆžโˆžx(t)dt=1/aX(j0) = \int_{-\infty}^{\infty}x(t)dt = 1/a.

Example 2: x(t)=eโˆ’aโˆฃtโˆฃx(t)=e^{-a|t|}, for a>0a>0
X(jฯ‰)=โˆซโˆ’โˆž0eateโˆ’jฯ‰tdt+โˆซ0โˆžeโˆ’ateโˆ’jฯ‰tdtX(j\omega) = \int_{-\infty}^{0}e^{at}e^{-j\omega t}dt + \int_{0}^{\infty}e^{-at}e^{-j\omega t}dt
X(jฯ‰)=โˆซ0โˆžeโˆ’atejฯ‰tdt+โˆซ0โˆžeโˆ’ateโˆ’jฯ‰tdtX(j\omega) = \int_{0}^{\infty}e^{-at}e^{j\omega t}dt + \int_{0}^{\infty}e^{-at}e^{-j\omega t}dt (by changing variable tโ†’โˆ’tt \rightarrow -t in the first integral)
X(jฯ‰)=โˆซ0โˆžeโˆ’(aโˆ’jฯ‰)tdt+โˆซ0โˆžeโˆ’(a+jฯ‰)tdtX(j\omega) = \int_{0}^{\infty}e^{-(a-j\omega)t}dt + \int_{0}^{\infty}e^{-(a+j\omega)t}dt
X(jฯ‰)=1aโˆ’jฯ‰+1a+jฯ‰=(a+jฯ‰)+(aโˆ’jฯ‰)(aโˆ’jฯ‰)(a+jฯ‰)=2aa2+ฯ‰2X(j\omega) = \frac{1}{a-j\omega} + \frac{1}{a+j\omega} = \frac{(a+j\omega) + (a-j\omega)}{(a-j\omega)(a+j\omega)} = \frac{2a}{a^2+\omega^2}.

  • Magnitude: โˆฃX(jฯ‰)โˆฃ=X(jฯ‰)|X(j\omega)| = X(j\omega) (since itโ€™s real and positive).
  • Phase: โˆ X(jฯ‰)=0\angle X(j\omega) = 0.

Example 3: x(t)=ฮด(t)x(t)=\delta(t) (Dirac delta function)
X(jฯ‰)=โˆซโˆ’โˆžโˆžฮด(t)eโˆ’jฯ‰tdt=eโˆ’jฯ‰โ‹…0=1X(j\omega) = \int_{-\infty}^{\infty}\delta(t)e^{-j\omega t}dt = e^{-j\omega \cdot 0} = 1 (by the sifting property of the delta function).
The spectrum is constant, meaning ฮด(t)\delta(t) is composed of all frequencies with equal strength (amplitude 1 and phase 0).


VII. Convergence of the Fourier Transform ๐Ÿ“ˆ

The convergence criteria for Fourier Transform are inherited from those for Fourier Series, as FT is effectively FS when Tโ†’โˆžT \rightarrow \infty.

Two types of convergence:

  1. Finite Energy Condition: If x(t)x(t) has finite energy, i.e., โˆซโˆ’โˆžโˆžโˆฃx(t)โˆฃ2dt<โˆž\int_{-\infty}^{\infty}|x(t)|^{2}dt<\infty, then the Fourier Transform converges in the sense that the error โˆซโˆ’โˆžโˆžโˆฃx(t)โˆ’x^(t)โˆฃ2dt=0\int_{-\infty}^{\infty}|x(t)-\hat{x}(t)|^{2}dt=0, where x^(t)=Fโˆ’1{F{x(t)}}\hat{x}(t) = \mathfrak{F}^{-1}\{\mathfrak{F}\{x(t)\}\}. Such signals are often bounded and decay to 0 sufficiently fast as โˆฃtโˆฃโ†’โˆž|t|\rightarrow\infty.
  2. Dirichlet Conditions: If x(t)x(t) satisfies the Dirichlet conditions, x^(t)\hat{x}(t) converges pointwise to x(t)x(t) where x(t)x(t) is continuous, and to the average of the values on either side of a discontinuity.
    The Dirichlet conditions are:
    a. x(t)x(t) is absolutely integrable over the entire time domain: โˆซโˆ’โˆžโˆžโˆฃx(t)โˆฃdt<โˆž\int_{-\infty}^{\infty}|x(t)|dt < \infty. ็ปๅฏนๅฏ็งฏ
    b. x(t)x(t) has a finite number of maxima and minima within any finite interval. ๆœ‰้™ไธชๆžๅ€ผ็‚น
    c. x(t)x(t) has a finite number of discontinuities, each with a finite height, within any finite interval. ๆœ‰้™ไธช้—ดๆ–ญ็‚น๏ผŒไธ”้ƒฝๆ˜ฏ็ฌฌไธ€็ฑป้—ดๆ–ญ็‚น
  • For x(t)=eโˆ’atu(t),a>0x(t)=e^{-at}u(t), a>0: Satisfies Dirichlet conditions.
  • For x(t)=eโˆ’aโˆฃtโˆฃ,a>0x(t)=e^{-a|t|}, a>0: Satisfies Dirichlet conditions.
  • For x(t)=ฮด(t)x(t)=\delta(t): Violates the third Dirichlet condition (infinite discontinuity). However, its FT is still considered to converge because Dirichlet conditions are sufficient, not necessary.

VIII. Rectangle-Sinc Fourier Transform Pair

If X(jฯ‰)=F{x(t)}X(j\omega) = \mathcal{F}\{x(t)\}, then x(t)x(t) and X(jฯ‰)X(j\omega) are a Fourier transform pair. The rectangle-sinc pair is very important.

Example 4.4: Rectangular Pulse in Time Domain

Let x(t)={1,โˆฃtโˆฃ<T10,โˆฃtโˆฃ>T1x(t) = \begin{cases} 1, & |t|<T_1 \\ 0, & |t|>T_1 \end{cases}.

X(jฯ‰)=โˆซโˆ’T1T11โ‹…eโˆ’jฯ‰tdt=[eโˆ’jฯ‰tโˆ’jฯ‰]โˆ’T1T1โ€…โ€ŠโŸนโ€…โ€ŠX(jฯ‰)=eโˆ’jฯ‰T1โˆ’ejฯ‰T1โˆ’jฯ‰=โˆ’(ejฯ‰T1โˆ’eโˆ’jฯ‰T1)โˆ’jฯ‰=2jsinโก(ฯ‰T1)jฯ‰=2sinโก(ฯ‰T1)ฯ‰\begin{align} X(j\omega) &= \int_{-T_1}^{T_1} 1 \cdot e^{-j\omega t}dt = \left[\frac{e^{-j\omega t}}{-j\omega}\right]_{-T_1}^{T_1} \\ \implies X(j\omega) &= \frac{e^{-j\omega T_1} - e^{j\omega T_1}}{-j\omega} = \frac{-(e^{j\omega T_1} - e^{-j\omega T_1})}{-j\omega} = \frac{2j\sin(\omega T_1)}{j\omega} = \frac{2\sin(\omega T_1)}{\omega} \end{align}

  • This is a sinc-like function.
  • At ฯ‰=0\omega=0: Using Lโ€™Hopitalโ€™s Rule, limโกฯ‰โ†’02sinโก(ฯ‰T1)ฯ‰=limโกฯ‰โ†’02T1cosโก(ฯ‰T1)1=2T1\lim_{\omega\to 0} \frac{2\sin(\omega T_1)}{\omega} = \lim_{\omega\to 0} \frac{2T_1\cos(\omega T_1)}{1} = 2T_1.
  • Zero crossings: 2sinโก(ฯ‰T1)ฯ‰=0\frac{2\sin(\omega T_1)}{\omega} = 0 when sinโก(ฯ‰T1)=0\sin(\omega T_1)=0 and ฯ‰โ‰ 0\omega \neq 0. So, ฯ‰T1=kฯ€\omega T_1 = k\pi for kโˆˆZ,kโ‰ 0k \in \mathbb{Z}, k \neq 0, i.e., ฯ‰=kฯ€/T1\omega = k\pi/T_1.
  • Itโ€™s an even symmetric function.
image-20250522232022351

Normalized Sinc Function:
The normalized sinc function is defined as:

sinc(x)=sinโก(ฯ€x)ฯ€x\text{sinc}(x) = \frac{\sin(\pi x)}{\pi x}

  • sinc(0)=1\text{sinc}(0)=1.
  • Zero crossings at all non-zero integers kk (i.e., x=k,kโ‰ 0x=k, k \neq 0)

Using this, the Fourier transform of the rectangular pulse x(t)x(t) can be written as:

2sinโก(ฯ‰T1)ฯ‰=2T1sinโก(ฯ‰T1)ฯ‰T1=2T1sinโก(ฯ€โ‹…ฯ‰T1ฯ€)ฯ€โ‹…ฯ‰T1ฯ€=2T1sinc(ฯ‰T1ฯ€)ย orย 2T1sinc(T1ฯ€ฯ‰)\frac{2\sin(\omega T_1)}{\omega} = 2T_1 \frac{\sin(\omega T_1)}{\omega T_1} = 2T_1 \frac{\sin(\pi \cdot \frac{\omega T_1}{\pi})}{\pi \cdot \frac{\omega T_1}{\pi}} = 2T_1 \text{sinc}\left(\frac{\omega T_1}{\pi}\right) \text{ or } 2T_1 \text{sinc}\left(\frac{T_1}{\pi}\omega\right)

Example 4.5: Rectangular Pulse in Frequency Domain (Ideal Lowpass Filter Spectrum)
Let X(jฯ‰)={1,โˆฃฯ‰โˆฃ<W0,โˆฃฯ‰โˆฃ>WX(j\omega) = \begin{cases} 1, & |\omega|<W \\ 0, & |\omega|>W \end{cases}
We use the inverse Fourier transform to find x(t)x(t):

x(t)=12ฯ€โˆซโˆ’WW1โ‹…ejฯ‰tdฯ‰=12ฯ€[ejฯ‰tjt]โˆ’WWโ€…โ€ŠโŸนโ€…โ€Šx(t)=12ฯ€ejWtโˆ’eโˆ’jWtjt=12ฯ€2jsinโก(Wt)jt=sinโก(Wt)ฯ€t\begin{align} x(t) &= \frac{1}{2\pi}\int_{-W}^{W} 1 \cdot e^{j\omega t}d\omega = \frac{1}{2\pi}\left[\frac{e^{j\omega t}}{jt}\right]_{-W}^{W} \\ \implies x(t) &= \frac{1}{2\pi} \frac{e^{jWt} - e^{-jWt}}{jt} = \frac{1}{2\pi} \frac{2j\sin(Wt)}{jt} = \frac{\sin(Wt)}{\pi t} \end{align}

This can also be written using the normalized sinc function:

sinโก(Wt)ฯ€t=Wฯ€sinโก(Wt)Wt=Wฯ€sinc(Wtฯ€)\frac{\sin(Wt)}{\pi t} = \frac{W}{\pi} \frac{\sin(Wt)}{Wt} = \frac{W}{\pi} \text{sinc}\left(\frac{Wt}{\pi}\right)

image-20250522233949243

IX. Duality of Fourier Transform โœจ

Thereโ€™s an interesting observation:

  • A rectangular signal in time, x(t)x(t), has a sinc-shaped spectrum, X(jฯ‰)X(j\omega).
  • A rectangular spectrum in frequency, X(jฯ‰)X(j\omega), corresponds to a sinc-shaped signal in time, x(t)x(t).

Duality Property: If a signal x(t)x(t) has a spectrum X(jฯ‰)X(j\omega) (i.e., x(t)โ†”X(jฯ‰)x(t) \leftrightarrow X(j\omega)), then a signal in time that has the functional form of X(t)X(t) will have a spectrum 2ฯ€x(โˆ’ฯ‰)2\pi x(-\omega) (i.e., X(t)โ†”2ฯ€x(โˆ’ฯ‰)X(t) \leftrightarrow 2\pi x(-\omega)). This will be formally proven in the next lecture.

Lecture 9: Fourier Transform Properties

FT and FS (Fourier Series)

The Fourier Series (FS) represents a periodic signal ฯ‡T0(t)\chi_{T_{0}}(t) as a sum of weighted harmonics, while the Fourier Transform (FT) represents a signal x(t)x(t) in the continuous frequency domain.

  • Fourier Series:

    {ak=1T0โˆซT0ฯ‡T0(t)eโˆ’jkฯ‰0tdtฯ‡T0(t)=โˆ‘k=โˆ’โˆž+โˆžakejkฯ‰0t\begin{cases} a_{k}=\frac{1}{T_{0}}\int_{T_{0}}\chi_{T_{0}}(t)e^{-jk\omega_{0}t}dt \\ \chi_{T_{0}}(t)=\sum_{k=-\infty}^{+\infty}a_{k}e^{jk\omega_{0}t} \end{cases}

  • Fourier Transform:

    {X(jฯ‰)=โˆซโˆ’โˆžโˆžx(t)eโˆ’jฯ‰tdtx(t)=12ฯ€โˆซโˆ’โˆžโˆžX(jฯ‰)ejฯ‰tdฯ‰\begin{cases} X(j\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt \\ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}d\omega \end{cases}

Key Differences:

  • The Fourier series spectrum (aka_k) is a discrete-time signal, leading to a sum in the synthesis equation.
  • The Fourier transform spectrum (X(jฯ‰)X(j\omega)) is a continuous-time signal, leading to an integral in the synthesis equation.
  • These differences arise because a non-periodic signal can be seen as having an infinite period, so its representation includes harmonics at all frequencies.

Normalized sinc Function

image-20250608162634820

The normalized sinc function is defined as:

sinc(ฯ‰)=sin(ฯ€ฯ‰)ฯ€ฯ‰sinc(\omega)=\frac{sin(\pi\omega)}{\pi\omega}

An arbitrary rectangular pulse x(t)x(t) which is 1 for โˆฃtโˆฃ<T1|t| < T_1 and 0 otherwise, has a Fourier Transform:

X(jฯ‰)=2sinโก(ฯ‰T1)ฯ‰X(j\omega) = \frac{2\sin(\omega T_{1})}{\omega}

This can be rewritten using the normalized sinc function:

X(jฯ‰)=2T1sinc(T1ฯ€ฯ‰)X(j\omega) = 2T_{1}sinc(\frac{T_{1}}{\pi}\omega)


Fourier Transform for Periodic Signals

To find the FT spectrum of a periodic signal xT0(t)x_{T_{0}}(t), we look for X(jฯ‰)X(j\omega) such that:

xT0(t)=12ฯ€โˆซโˆ’โˆžโˆžX(jฯ‰)ejฯ‰tdฯ‰x_{T_{0}}(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}d\omega

If aka_k are the FS coefficients of xT0(t)x_{T_{0}}(t), then we must have:

12ฯ€โˆซโˆ’โˆžโˆžX(jฯ‰)ejฯ‰tdฯ‰=โˆ‘k=โˆ’โˆžโˆžakejkฯ‰0t\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}d\omega=\sum_{k=-\infty}^{\infty}a_{k}e^{jk\omega_{0}t}

This implies that X(jฯ‰)X(j\omega) must be an impulse train located at the harmonic frequencies kฯ‰0k\omega_{0}.

So, the Fourier Transform of a periodic signal xT0(t)x_{T_{0}}(t) with Fourier Series coefficients aka_k is (a weighted impulse train):

X(jฯ‰)โ‰œ2ฯ€โˆ‘k=โˆ’โˆžโˆžakฮด(ฯ‰โˆ’kฯ‰0)X(j\omega) \triangleq 2\pi\sum_{k=-\infty}^{\infty}a_{k}\delta(\omega-k\omega_{0})

Verification:
Substituting this X(jฯ‰)X(j\omega) into the inverse FT equation:

xT0(t)=12ฯ€โˆซโˆ’โˆžโˆž(2ฯ€โˆ‘k=โˆ’โˆžโˆžakฮด(ฯ‰โˆ’kฯ‰0))ejฯ‰tdฯ‰xT0(t)=โˆ‘k=โˆ’โˆžโˆžakโˆซโˆ’โˆžโˆžฮด(ฯ‰โˆ’kฯ‰0)ejฯ‰tdฯ‰=โˆ‘k=โˆ’โˆžโˆžakejkฯ‰0t\begin{align} x_{T_{0}}(t) &= \frac{1}{2\pi}\int_{-\infty}^{\infty} (2\pi\sum_{k=-\infty}^{\infty}a_{k}\delta(\omega-k\omega_{0})) e^{j\omega t}d\omega \\ x_{T_{0}}(t) &= \sum_{k=-\infty}^{\infty}a_{k}\int_{-\infty}^{\infty}\delta(\omega-k\omega_{0})e^{j\omega t}d\omega = \sum_{k=-\infty}^{\infty}a_{k}e^{jk\omega_{0}t} \end{align}

This is the Fourier series synthesis equation, confirming the result.

Convergence Note: Periodic signals donโ€™t satisfy the Dirichlet conditions or finite energy criterion for FT convergence. However, convergence is still guaranteed here because these conditions are sufficient, not necessary.


Examples of FT for Periodic Signals

  1. x(t)=cos(ฯ‰0t)x(t) = cos(\omega_{0}t)

    • FS coefficients: a1=1/2a_1 = 1/2, aโˆ’1=1/2a_{-1} = 1/2, and ak=0a_k = 0 for other kk.
    • FT: X(jฯ‰)=ฯ€ฮด(ฯ‰โˆ’ฯ‰0)+ฯ€ฮด(ฯ‰+ฯ‰0)X(j\omega) = \pi\delta(\omega-\omega_{0}) + \pi\delta(\omega+\omega_{0})
    • Difference between FT and FS spectra: The FT spectrum consists of impulses (not just numbers), is rescaled by 2ฯ€2\pi, and the horizontal axis represents ฯ‰\omega instead of kk.
  2. x(t)=sinโก(ฯ‰0T)x(t) = \sin (\omega_0 T)

    • FS coefficients: a1=12ja_1 = \frac{1}{2j}, aโˆ’1=โˆ’12ja_{-1} = -\frac{1}{2j}, and ak=0a_k = 0 for other kk.
    • FT: X(jฯ‰)=ฯ€j[ฮด(ฯ‰โˆ’ฯ‰0)โˆ’ฮด(ฯ‰+ฯ‰0)]=jฯ€[ฮด(ฯ‰+ฯ‰0)โˆ’ฮด(ฯ‰โˆ’ฯ‰0)]X(j\omega) = \frac{\pi}{j}[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] = j\pi[\delta(\omega + \omega_0) - \delta(\omega - \omega_0)]
  3. x(t)=โˆ‘n=โˆ’โˆžโˆžฮด(tโˆ’nT)x(t) = \sum_{n=-\infty}^{\infty}\delta(t-nT) (Comb function / Periodic impulse train)

    • FS coefficients: ak=1Ta_k = \frac{1}{T} for all kk.
    • FT: X(jฯ‰)=2ฯ€Tโˆ‘k=โˆ’โˆžโˆžฮด(ฯ‰โˆ’2ฯ€Tk)X(j\omega) = \frac{2\pi}{T}\sum_{k=-\infty}^{\infty}\delta(\omega-\frac{2\pi}{T}k)
    • The Fourier transform of a comb function is another comb function with an inversely proportional period.
  4. Periodic Square Signal x~(t)\tilde{x}(t) (1 for โˆฃtโˆฃ<T1|t|<T_1, 0 for T1<โˆฃtโˆฃโ‰คT0/2T_1<|t|\leq T_0/2, period T0T_0)

    • FS coefficients: ak=sin(2ฯ€T0kT1)ฯ€ka_{k}=\frac{sin(\frac{2\pi}{T_{0}}kT_{1})}{\pi k}
    • FT: X(jฯ‰)=โˆ‘k=โˆ’โˆžโˆž2sinโก(2ฯ€T0kT1)kฮด(ฯ‰โˆ’2ฯ€T0k)X(j\omega)=\sum_{k=-\infty}^{\infty}\frac{2\sin(\frac{2\pi}{T_{0}}kT_{1})}{k}\delta(\omega-\frac{2\pi}{T_{0}}k)
      • This can also be written as: X(jฯ‰)=4ฯ€T1T0sinc(T1ฯ€ฯ‰)โˆ‘k=โˆ’โˆžโˆžฮด(ฯ‰โˆ’2ฯ€T0k)X(j\omega) = \frac{4\pi T_{1}}{T_{0}}sinc(\frac{T_{1}}{\pi}\omega)\sum_{k=-\infty}^{\infty}\delta(\omega-\frac{2\pi}{T_{0}}k)
    • The FT spectrum of a periodic square wave is a sampled sinc function.

A table of basic Fourier Transform pairs is provided, and itโ€™s highly recommended to memorize them.

Question Example: Evaluate and plot the FT spectrum of 1+cos(ฯ‰0t)+sin(2ฯ‰0t)1+cos(\omega_{0}t)+sin(2\omega_{0}t).

1+cos(ฯ‰0t)+sin(2ฯ‰0t)=1+12ejฯ‰0t+12eโˆ’jฯ‰0t+12jej2ฯ‰0tโˆ’12jeโˆ’j2ฯ‰0t1+cos(\omega_{0}t)+sin(2\omega_{0}t) = 1+\frac{1}{2}e^{j\omega_{0}t}+\frac{1}{2}e^{-j\omega_{0}t}+\frac{1}{2j}e^{j2\omega_{0}t}-\frac{1}{2j}e^{-j2\omega_{0}t}

FS coefficients aka_k:
a0=1a_0 = 1
a1=1/2a_1 = 1/2, aโˆ’1=1/2a_{-1} = 1/2
a2=1/(2j)a_2 = 1/(2j), aโˆ’2=โˆ’1/(2j)a_{-2} = -1/(2j)
FT Spectrum: X(jฯ‰)=2ฯ€โˆ‘akฮด(ฯ‰โˆ’kฯ‰0)X(j\omega) = 2\pi\sum a_k \delta(\omega - k\omega_0)

X(jฯ‰)=2ฯ€ฮด(ฯ‰)+ฯ€ฮด(ฯ‰โˆ’ฯ‰0)+ฯ€ฮด(ฯ‰+ฯ‰0)+ฯ€jฮด(ฯ‰โˆ’2ฯ‰0)โˆ’ฯ€jฮด(ฯ‰+2ฯ‰0)X(j\omega) = 2\pi\delta(\omega) + \pi\delta(\omega-\omega_0) + \pi\delta(\omega+\omega_0) + \frac{\pi}{j}\delta(\omega-2\omega_0) - \frac{\pi}{j}\delta(\omega+2\omega_0)


Properties of Fourier Transform

  1. Linearity

    • If x(t)โ†”X(jฯ‰)x(t)\leftrightarrow X(j\omega) and y(t)โ†”Y(jฯ‰)y(t)\leftrightarrow Y(j\omega), then ax(t)+by(t)โ†”aX(jฯ‰)+bY(jฯ‰)ax(t)+by(t)\leftrightarrow aX(j\omega)+bY(j\omega) for any complex numbers aa and bb.
    • This is true because integration is a linear operation.
  2. Time-Shifting Property: If x(t)โ†”X(jฯ‰)x(t)\leftrightarrow X(j\omega), then x(tโˆ’t0)โ†”eโˆ’jฯ‰t0X(jฯ‰)x(t-t_{0})\leftrightarrow e^{-j\omega t_{0}}X(j\omega)

    • For FS: x(tโˆ’t0)โŸทF.S.eโˆ’jkฯ‰0t0akx(t-t_{0})\stackrel{F.S.}{\longleftrightarrow} e^{-jk\omega_{0}t_{0}}a_{k}
    • Indication: Time shifting only changes the phase spectrum by adding a linear phase โˆ’ฯ‰t0-\omega t_{0}. The phase spectrum determines the location of each harmonic.
  3. Time-Reversal: If x(t)โ†”X(jฯ‰)x(t)\leftrightarrow X(j\omega), then x(โˆ’t)โ†”X(โˆ’jฯ‰)x(-t)\leftrightarrow X(-j\omega)

    • For FS: x(โˆ’t)โ†”aโˆ’kx(-t)\leftrightarrow a_{-k}
    • Indications:
      • If x(t)x(t) is even, then X(jฯ‰)X(j\omega) is even.
      • If x(t)x(t) is odd, then X(jฯ‰)X(j\omega) is odd.
    • Reversing a signal or flipping an image causes a reversed or flipped spectrum.
  4. Conjugacy and Symmetry
    If x(t)โ†”X(jฯ‰)x(t)\leftrightarrow X(j\omega), then xโˆ—(t)โ†”Xโˆ—(โˆ’jฯ‰)x^{*}(t)\leftrightarrow X^{*}(-j\omega)

    • For FS: xโˆ—(t)โ†”aโˆ’kโˆ—x^{*}(t)\leftrightarrow a_{-k}^{*}

    • If x(t)x(t) is real, then X(jฯ‰)=Xโˆ—(โˆ’jฯ‰)X(j\omega)=X^{*}(-j\omega) (conjugate symmetric).

      • This means the real part of X(jฯ‰)X(j\omega) is even, and the imaginary part of X(jฯ‰)X(j\omega) is odd.
    • For real signals x(t)x(t):

      • If x(t)x(t) is real and even, X(jฯ‰)X(j\omega) is real and even.
      • If x(t)x(t) is real and odd, X(jฯ‰)X(j\omega) is imaginary and odd.
    • Since a real signal x(t)=xe(t)+xo(t)x(t) = x_e(t) + x_o(t) (even and odd components), its FT is X(jฯ‰)=F{xe(t)}+F{xo(t)}X(j\omega) = \mathcal{F}\{x_e(t)\} + \mathcal{F}\{x_o(t)\}.

    • Also, X(jฯ‰)=Re{X(jฯ‰)}+jโ‹…Im{X(jฯ‰)}X(j\omega) = Re\{X(j\omega)\} + j \cdot Im\{X(j\omega)\}.

    • This implies: Re{X(jฯ‰)}=F{xe(t)}Re\{X(j\omega)\} = \mathcal{F}\{x_e(t)\} and jIm{X(jฯ‰)}=F{xo(t)}jIm\{X(j\omega)\} = \mathcal{F}\{x_o(t)\}.

    Example 4.9 (Combining signals):

    How to generate Fourier transform of x(t) from that of x1(t) & x2(t)?

    image-20250523123506657
    • Given x1(t)x_1(t) with X1(jฯ‰)=2sinโก(ฯ‰/2)ฯ‰X_1(j\omega) = \frac{2\sin(\omega/2)}{\omega} and x2(t)x_2(t) with X2(jฯ‰)=2sinโก(3ฯ‰/2)ฯ‰X_2(j\omega) = \frac{2\sin(3\omega/2)}{\omega}.
    • Find that x(t)=12x1(tโˆ’2.5)+x2(tโˆ’2.5)x(t) = \frac{1}{2}x_1(t-2.5) + x_2(t-2.5).
    • Then X(jฯ‰)=eโˆ’j2.5ฯ‰(12X1(jฯ‰)+X2(jฯ‰))=eโˆ’j2.5ฯ‰(sinโก(ฯ‰/2)ฯ‰+2sinโก(3ฯ‰/2)ฯ‰)X(j\omega) = e^{-j2.5\omega} \left( \frac{1}{2}X_1(j\omega) + X_2(j\omega) \right) = e^{-j2.5\omega} \left( \frac{\sin(\omega/2)}{\omega} + \frac{2\sin(3\omega/2)}{\omega} \right).

    Example 4.10 (Using properties to find FT): Find FT of x(t)=eโˆ’aโˆฃtโˆฃx(t) = e^{-a|t|}, a>0a>0, given eโˆ’atu(t)โ†”1a+jฯ‰e^{-at}u(t) \leftrightarrow \frac{1}{a+j\omega}.

    • Decompose x(t)x(t) into x(t)=eโˆ’atu(t)+eatu(โˆ’t)x(t) = e^{-at}u(t) + e^{at}u(-t).
    • Let y(t)=eโˆ’atu(t)y(t) = e^{-at}u(t). Then eatu(โˆ’t)=y(โˆ’t)e^{at}u(-t) = y(-t)
    • Then, we have Y(jฯ‰)=1a+jฯ‰Y(j\omega) = \frac{1}{a+j\omega}, and F{y(โˆ’t)}=Y(โˆ’jฯ‰)=1aโˆ’jฯ‰\mathcal{F}\{y(-t)\} = Y(-j\omega) = \frac{1}{a-j\omega}.
    • So, X(jฯ‰)=1a+jฯ‰+1aโˆ’jฯ‰=aโˆ’jฯ‰+a+jฯ‰(a+jฯ‰)(aโˆ’jฯ‰)=2aa2+ฯ‰2X(j\omega) = \frac{1}{a+j\omega} + \frac{1}{a-j\omega} = \frac{a-j\omega + a+j\omega}{(a+j\omega)(a-j\omega)} = \frac{2a}{a^2+\omega^2}.
    • Alternatively, x(t)=2โ‹…Ev{eโˆ’atu(t)}x(t) = 2 \cdot \text{Ev}\{e^{-at}u(t)\}.
    • Since Ev{y(t)}โ†”Re{Y(jฯ‰)}\text{Ev}\{y(t)\} \leftrightarrow Re\{Y(j\omega)\},
    • X(jฯ‰)=2โ‹…Re{1a+jฯ‰}=2โ‹…Re{aโˆ’jฯ‰a2+ฯ‰2}=2โ‹…aa2+ฯ‰2=2aa2+ฯ‰2X(j\omega) = 2 \cdot Re\left\{\frac{1}{a+j\omega}\right\} = 2 \cdot Re\left\{\frac{a-j\omega}{a^2+\omega^2}\right\} = 2 \cdot \frac{a}{a^2+\omega^2} = \frac{2a}{a^2+\omega^2}.
  5. Multiplication Property

    x(t)y(t)โ†”F12ฯ€X(jฯ‰)โˆ—Y(jฯ‰)x(t)y(t) \stackrel{\mathcal{F}}{\leftrightarrow} \frac{1}{2\pi} X(j\omega) * Y(j\omega)

  6. Differentiation & Integration

    • Differentiation Property: If x(t)โ†”X(jฯ‰)x(t)\leftrightarrow X(j\omega), then dx(t)dtโ†”jฯ‰X(jฯ‰)\frac{dx(t)}{dt}\leftrightarrow j\omega X(j\omega)
      • For FS: dx(t)dtโŸทF.S.jkฯ‰0ak\frac{dx(t)}{dt}\stackrel{F.S.}{\longleftrightarrow} jk\omega_{0}a_{k}
      • Indication: A differentiator acts as a highpass filter (non-ideal).
    • Integration Property: If x(t)โ†”X(jฯ‰)x(t)\leftrightarrow X(j\omega), then โˆซโˆ’โˆžtx(ฯ„)dฯ„โ†”1jฯ‰X(jฯ‰)+ฯ€X(j0)ฮด(ฯ‰)\int_{-\infty}^{t}x(\tau)d\tau\leftrightarrow\frac{1}{j\omega}X(j\omega) + \pi X(j0)\delta(\omega)
      • The term ฯ€X(j0)ฮด(ฯ‰)\pi X(j0)\delta(\omega) accounts for the DC component or average value that can result from integration.
      • For FS: If a0=0a_0=0, then โˆซโˆ’โˆžtx(ฯ„)dฯ„โŸทF.S.akjkฯ‰0\int_{-\infty}^{t}x(\tau)d\tau \stackrel{F.S.}{\longleftrightarrow} \frac{a_k}{jk\omega_0} (assuming x(t)x(t) is the signal being integrated, not ฯ„\tau).

    Example 4.11 (FT of unit step): Find FT for x(t)=u(t)x(t)=u(t).

    • We know u(t)=โˆซโˆ’โˆžtฮด(ฯ„)dฯ„u(t) = \int_{-\infty}^{t}\delta(\tau)d\tau. Let g(t)=ฮด(t)g(t) = \delta(t), so G(jฯ‰)=1G(j\omega)=1.
      Using the integration property:

      X(jฯ‰)=G(jฯ‰)jฯ‰+ฯ€G(j0)ฮด(ฯ‰)=1jฯ‰+ฯ€(1)ฮด(ฯ‰)=1jฯ‰+ฯ€ฮด(ฯ‰)X(j\omega) = \frac{G(j\omega)}{j\omega} + \pi G(j0)\delta(\omega) = \frac{1}{j\omega} + \pi(1)\delta(\omega) = \frac{1}{j\omega} + \pi\delta(\omega)

      We can recover the FT of ฮด(t)\delta(t) using differentiation:

      ฮด(t)=du(t)dtโ†”jฯ‰(1jฯ‰+ฯ€ฮด(ฯ‰))=1+jฯ‰ฯ€ฮด(ฯ‰)\delta(t) = \frac{du(t)}{dt} \leftrightarrow j\omega \left( \frac{1}{j\omega} + \pi\delta(\omega) \right) = 1 + j\omega\pi\delta(\omega)

      Since ฯ‰ฮด(ฯ‰)=0\omega\delta(\omega) = 0, this simplifies to 11.
  7. Parsevalโ€™s Theorem
    If x(t)โ†”X(jฯ‰)x(t)\leftrightarrow X(j\omega), then โˆซโˆ’โˆžโˆžโˆฃx(t)โˆฃ2dt=12ฯ€โˆซโˆ’โˆžโˆžโˆฃX(jฯ‰)โˆฃ2dฯ‰\int_{-\infty}^{\infty}|x(t)|^{2}dt=\frac{1}{2\pi}\int_{-\infty}^{\infty}|X(j\omega)|^{2}d\omega

    • This is also called the โ€œenergy-preservation propertyโ€.
    • โˆฃX(jฯ‰)โˆฃ2|X(j\omega)|^2 is called the Energy-density Spectrum๏ผˆๅŠŸ็އๅฏ†ๅบฆ่ฐฑ๏ผŒ็ฎ€็งฐๅŠŸ็އ่ฐฑ๏ผ‰ of x(t)x(t), reflecting energy density at each frequency.
    • For natural signals, energy is typically more concentrated in lower frequencies.
  8. Time-Scaling Property
    If x(t)โ†”FX(jฯ‰)x(t)\stackrel{\mathcal{F}}{\leftrightarrow} X(j\omega), then for any real aโ‰ 0a \neq 0: x(at)โ†”F1โˆฃaโˆฃX(jฯ‰a)x(at)\stackrel{\mathcal{F}}{\leftrightarrow} \frac{1}{|a|}X(\frac{j\omega}{a})

    • If โˆฃaโˆฃ>1|a|>1, x(t)x(t) is squeezed, X(jฯ‰)X(j\omega) is stretched and scaled down.
    • If โˆฃaโˆฃ<1|a|<1, x(t)x(t) is stretched, X(jฯ‰)X(j\omega) is squeezed and scaled up.
    • Squeezing in time (faster variation) leads to more high-frequency components (stretching in frequency).
    • Stretching in time (slower variation) leads to more low-frequency components (squeezing in frequency).
    • Example: rect(t/T1)โ†”2โˆฃT1โˆฃsinc(T1ฯ‰ฯ€)rect(t/T_1) \leftrightarrow 2|T_1|sinc(\frac{T_1\omega}{\pi}), where rect(t)=1rect(t)=1 for โˆฃtโˆฃ<1|t|<1 and 0 otherwise. (Note: The slide shows rect(t)โ†”2sinc(ฯ‰ฯ€)rect(t)\leftrightarrow2sinc(\frac{\omega}{\pi}) with T1=1T_1=1 for the basic form).

    Proof of Time-Scaling Property:
    F{x(at)}=โˆซโˆ’โˆžโˆžx(at)eโˆ’jฯ‰tdt\mathcal{F}\{x(at)\} = \int_{-\infty}^{\infty} x(at)e^{-j\omega t}dt.
    Let u=atu = at, so t=u/at = u/a and dt=du/adt = du/a.
    If a>0a > 0:
    โˆซโˆ’โˆžโˆžx(u)eโˆ’jฯ‰(u/a)dua=1aโˆซโˆ’โˆžโˆžx(u)eโˆ’j(ฯ‰/a)udu=1aX(jฯ‰a)\int_{-\infty}^{\infty} x(u)e^{-j\omega (u/a)} \frac{du}{a} = \frac{1}{a} \int_{-\infty}^{\infty} x(u)e^{-j(\omega/a)u}du = \frac{1}{a}X(j\frac{\omega}{a}).
    If a<0a < 0: The limits of integration flip, โˆซโˆžโˆ’โˆž\int_{\infty}^{-\infty}, which introduces a negative sign that cancels with 1/a1/a when taking โˆฃaโˆฃ|a|.
    โˆซโˆžโˆ’โˆžx(u)eโˆ’jฯ‰(u/a)dua=โˆ’1aโˆซโˆ’โˆžโˆžx(u)eโˆ’j(ฯ‰/a)udu=1โˆฃaโˆฃX(jฯ‰a)\int_{\infty}^{-\infty} x(u)e^{-j\omega (u/a)} \frac{du}{a} = -\frac{1}{a} \int_{-\infty}^{\infty} x(u)e^{-j(\omega/a)u}du = \frac{1}{|a|}X(j\frac{\omega}{a}).
    Thus, for aโ‰ 0a \neq 0, F{x(at)}=1โˆฃaโˆฃX(jฯ‰a)\mathcal{F}\{x(at)\} = \frac{1}{|a|}X(j\frac{\omega}{a}).

  9. Duality and Related Properties
    The FT and IFT equations are symmetric, differing mainly by a sign in the exponent and a 1/(2ฯ€)1/(2\pi) scaler.

    X(jฯ‰)=โˆซโˆ’โˆžโˆžx(t)eโˆ’jฯ‰tdtx(t)=12ฯ€โˆซโˆ’โˆžโˆžX(jฯ‰)ejฯ‰tdฯ‰X(j\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt \quad x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}d\omega

    Duality Property:
    If x(t)โ†”X(jฯ‰)x(t)\leftrightarrow X(j\omega), then X(t)โ†”2ฯ€x(โˆ’jฯ‰)X(t)\leftrightarrow 2\pi x(-j\omega) , or equivalently, 12ฯ€X(โˆ’t)โ†”x(jฯ‰)\frac{1}{2\pi}X(-t)\leftrightarrow x(j\omega)

    Proof of 12ฯ€X(โˆ’t)โ†”x(jฯ‰)\frac{1}{2\pi}X(-t)\leftrightarrow x(j\omega):

    The provided proof in the slide is for Fโˆ’1{x(jฯ‰)}=12ฯ€X(โˆ’t)\mathcal{F}^{-1}\{x(j\omega)\} = \frac{1}{2\pi}X(-t):

    Fโˆ’1{x(jฯ‰)}=12ฯ€โˆซโˆ’โˆžโˆžx(jฯ‰)ejฯ‰tdฯ‰=12ฯ€โˆซโˆ’โˆžโˆžx(jฯ‰)eโˆ’jฯ‰(โˆ’t)dฯ‰=12ฯ€X(โˆ’t)\mathcal{F}^{-1}\{x(j\omega)\} = \frac{1}{2\pi}\int_{-\infty}^{\infty} x(j\omega)e^{j\omega t} d\omega = \frac{1}{2\pi}\int_{-\infty}^{\infty} x(j\omega)e^{-j\omega(-t)} d\omega = \frac{1}{2\pi}X(-t)

    Alternative Proof
    Consider the original IFT

    x(t)=12ฯ€โˆซโˆ’โˆžโˆžX(jฯ‰)ejฯ‰tdฯ‰x(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}d\omega

    Swap variables ฯ‰โ†”t\omega \leftrightarrow t , we have

    x(jฯ‰)=12ฯ€โˆซโˆ’โˆžโˆžX(t)ejtฯ‰dt=12ฯ€โˆซโˆžโˆ’โˆžX(โˆ’t)ej(โˆ’t)ฯ‰d(โˆ’t)=12ฯ€โˆซโˆ’โˆžโˆžX(โˆ’t)eโˆ’jฯ‰tโ€‰dtx(j\omega) = \frac{1}{2\pi}\int_{-\infty}^{\infty}X(t)e^{jt\omega}dt = \frac{1}{2\pi} \int_{\infty}^{-\infty}X(-t)e^{j(-t)\omega}d(-t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(-t)e^{-j\omega t}\, dt

    This expression is x(jฯ‰)=12ฯ€F{X(โˆ’t)}x(j\omega) = \mathcal{\frac{1}{2\pi} F}\{X(-t)\}

    Applications of Duality - Deriving New Properties:

    • Frequency-Shifting Property:

    x(t)ejฯ‰0tโ†”X(j(ฯ‰โˆ’ฯ‰0))x(t)e^{j\omega_{0}t}\leftrightarrow X(j(\omega-\omega_{0}))

    Derived from time-shifting property and duality.
    Proof:

    • Time-shifting: x(tโˆ’t0)โ†”eโˆ’jฯ‰t0X(jฯ‰)x(t-t_0) \leftrightarrow e^{-j\omega t_0}X(j\omega).
    • Let x(t)โ†”FX(jฯ‰)x(t) \stackrel{\mathcal{F}}{\leftrightarrow} X(j\omega)
    • Duality: X(t)โ†”2ฯ€x(โˆ’jฯ‰)X(t) \leftrightarrow 2\pi x(-j\omega).
    • Apply time shift to X(t)X(t): X(tโˆ’ฯ‰0)โ†”2ฯ€x(โˆ’jฯ‰)eโˆ’jฯ‰ฯ‰0X(t-\omega_0) \leftrightarrow 2\pi x(-j\omega)e^{-j\omega\omega_0}.
    • Use Duality Again: 12ฯ€Y(โˆ’t)โ†”y(jฯ‰)\frac{1}{2\pi} Y(-t) \leftrightarrow y(j\omega) where y(t)=X(tโˆ’ฯ‰0)y(t) = X(t-\omega_0) and Y(jฯ‰)=2ฯ€x(โˆ’jฯ‰)eโˆ’jฯ‰ฯ‰0Y(j\omega) = 2\pi x(-j\omega) e^{-j\omega \omega_0}
    • Finally, we have

12ฯ€โ‹…2ฯ€โ‹…x(t)eโˆ’jtฯ‰0โ†”FX(j(ฯ‰โˆ’ฯ‰0))โ€…โ€ŠโŸนโ€…โ€Šx(t)eโˆ’jtฯ‰0โ†”FX(j(ฯ‰โˆ’ฯ‰0))\frac{1}{2\pi} \cdot 2\pi \cdot x(t) e^{-jt\omega_0} \stackrel{\mathcal{F}}{\leftrightarrow} X(j(\omega-\omega_0)) \implies x(t) e^{-jt\omega_0} \stackrel{\mathcal{F}}{\leftrightarrow} X(j(\omega-\omega_0))

A more standard derivation ๆ ‡ๅ‡†่ฏๆ˜Žๆ–นๆณ•่ฟ˜ๆ˜ฏ็”จไธ€ๆฌกๅฏนๅถๆ€ง+็งฏๅˆ†่ฏๆ˜Ž๏ผŒppt้‡Œ้ข้‚ฃไธช่ฏๆ˜Žๆ–นๆณ•ๅพˆๆถๅฟƒ๏ผŒ่ฟ˜ไธๅฆ‚็›ดๆŽฅ็”จ็งฏๅˆ†

x(t)โ†”X(jฯ‰)x(t) \leftrightarrow X(j\omega)

  • Let g(t)=ejฯ‰0tx(t)g(t) = e^{j\omega_0 t}x(t).
  • G(jฯ‰)=โˆซโˆ’โˆžโˆžx(t)ejฯ‰0teโˆ’jฯ‰tdt=โˆซโˆ’โˆžโˆžx(t)eโˆ’j(ฯ‰โˆ’ฯ‰0)tdt=X(j(ฯ‰โˆ’ฯ‰0))G(j\omega) = \int_{-\infty}^\infty x(t)e^{j\omega_0 t} e^{-j\omega t} dt = \int_{-\infty}^\infty x(t) e^{-j(\omega-\omega_0)t} dt = X(j(\omega-\omega_0)).
  • This is a direct derivation.

Frequency-Differentiation Property:

โˆ’jtx(t)โ†”dX(jฯ‰)dฯ‰ย orย tx(t)โ†”jdX(jฯ‰)dฯ‰-jtx(t)\leftrightarrow\frac{dX(j\omega)}{d\omega} \text{ or } tx(t)\leftrightarrow j\frac{dX(j\omega)}{d\omega}

Derived from differentiation property and duality.
Proof (using duality twice):

  1. Differentiation: dy(t)dtโ†”jฯ‰Y(jฯ‰)\frac{dy(t)}{dt} \leftrightarrow j\omega Y(j\omega).
  2. Duality: X(t)โ†”2ฯ€x(โˆ’jฯ‰)X(t)\leftrightarrow2\pi x(-j\omega).
  3. Apply differentiation to X(t)X(t): dX(t)/dtโ†”jฯ‰(2ฯ€x(โˆ’jฯ‰))dX(t)/dt \leftrightarrow j\omega (2\pi x(-j\omega)). (Here, the FT is taken with respect to ฯ‰\omega).
  4. Apply duality again to the pair from step 3:
    The โ€œtime functionโ€ is jฯ‰โ€ฒ(2ฯ€x(โˆ’jฯ‰โ€ฒ))j\omega' (2\pi x(-j\omega')) and the โ€œfrequency functionโ€ is dX(t)/dtdX(t)/dt.
    Using Xโ€ฒ(tโ€ฒ)โ†”2ฯ€xโ€ฒ(โˆ’jฯ‰โ€ฒ)X'(t') \leftrightarrow 2\pi x'(-j\omega'):
    j(โˆ’jt)(2ฯ€x(โˆ’j(โˆ’jt)))โ†”2ฯ€d(X(โˆ’ฯ‰))d(โˆ’ฯ‰)/(2ฯ€)j(-jt)(2\pi x(-j(-jt))) \leftrightarrow 2\pi \frac{d(X(-\omega))}{d(-\omega)} / (2\pi) ? This is also tricky to follow directly.

A more standard derivation: ๆ›ดๆ ‡ๅ‡†็š„ไฝฟ็”จๆ–นๆณ•ไป็„ถๆ˜ฏไฝฟ็”จ็งฏๅˆ†๏ผŒไธ่ฆไฝœๆญป็ป•ๆฅ็ป•ๅŽป๏ผ

X(jฯ‰)=โˆซx(t)eโˆ’jฯ‰tdtX(j\omega) = \int x(t) e^{-j\omega t} dt

dX(jฯ‰)dฯ‰=โˆซx(t)d(eโˆ’jฯ‰t)dฯ‰dt=โˆซx(t)(โˆ’jt)eโˆ’jฯ‰tdt=โˆซ(โˆ’jtx(t))eโˆ’jฯ‰tdt=F{โˆ’jtx(t)}\frac{dX(j\omega)}{d\omega} = \int x(t) \frac{d(e^{-j\omega t})}{d\omega} dt = \int x(t) (-jt) e^{-j\omega t} dt = \int (-jtx(t)) e^{-j\omega t} dt = \mathcal{F}\{-jtx(t)\}

  1. Convolution Property (Not detailed in these slides beyond listing, typically x(t)โˆ—y(t)โ†”X(jฯ‰)Y(jฯ‰)x(t)*y(t) \leftrightarrow X(j\omega)Y(j\omega)).

Two Methods to Predict Outputs for Periodic Inputs

For a system with impulse response h(t)h(t) and frequency response H(jฯ‰)H(j\omega), we can predict the output y(t)y(t) for a periodic input x(t)x(t).

1. Time-Domain Approach:

  • Input: A sum of impulses x(t)=โˆซโˆ’โˆžโˆžx(ฯ„)ฮด(tโˆ’ฯ„)dฯ„x(t)=\int_{-\infty}^{\infty}x(\tau)\delta(t-\tau)d\tau.
  • Output: A sum of impulse responses y(t)=โˆซโˆ’โˆžโˆžx(ฯ„)h(tโˆ’ฯ„)dฯ„y(t)=\int_{-\infty}^{\infty}x(\tau)h(t-\tau)d\tau. This is the convolution integral.

2. Frequency-Domain Approach:

  • Input (periodic): A sum of exponentials x(t)=โˆ‘k=โˆ’โˆžโˆžakejkฯ‰0tx(t)=\sum_{k=-\infty}^{\infty}a_{k}e^{jk\omega_{0}t}.
  • The frequency response H(jฯ‰)H(j\omega) is sampled at kฯ‰0k\omega_{0} for all integers kk, resulting in H(jkฯ‰0)H(jk\omega_{0}).
  • Output (periodic): A sum of exponential responses y(t)=โˆ‘k=โˆ’โˆžโˆžakH(jkฯ‰0)ejkฯ‰0ty(t)=\sum_{k=-\infty}^{\infty}a_{k}H(jk\omega_{0})e^{jk\omega_{0}t}.

A key question arises: What if the input signal is non-periodic?


Convolution Property

Definition

If x(t)โ†”X(jฯ‰)x(t)\leftrightarrow X(j\omega) and y(t)โ†”Y(jฯ‰)y(t)\leftrightarrow Y(j\omega), then the convolution property states:

x(t)โˆ—y(t)โ†”X(jฯ‰)Y(jฯ‰)x(t)*y(t)\leftrightarrow X(j\omega)Y(j\omega)

This means that convolution in the time domain corresponds to multiplication in the frequency domain.

Proof

We want to show that Fโˆ’1{X(jฯ‰)Y(jฯ‰)}=x(t)โˆ—y(t)\mathfrak{F}^{-1}\{X(j\omega)Y(j\omega)\}=x(t)*y(t).
The inverse Fourier transform is:

12ฯ€โˆซโˆ’โˆžโˆžX(jฯ‰)Y(jฯ‰)ejฯ‰tdฯ‰\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)Y(j\omega)e^{j\omega t}d\omega

Substitute the Fourier transform definitions for X(jฯ‰)X(j\omega) and Y(jฯ‰)Y(j\omega):

X(jฯ‰)=โˆซโˆ’โˆžโˆžx(t1)eโˆ’jฯ‰t1dt1X(j\omega) = \int_{-\infty}^{\infty}x(t_{1})e^{-j\omega t_{1}}dt_{1}

Y(jฯ‰)=โˆซโˆ’โˆžโˆžy(t2)eโˆ’jฯ‰t2dt2Y(j\omega) = \int_{-\infty}^{\infty}y(t_{2})e^{-j\omega t_{2}}dt_{2}

So,

12ฯ€โˆซโˆ’โˆžโˆž[โˆซโˆ’โˆžโˆžx(t1)eโˆ’jฯ‰t1dt1][โˆซโˆ’โˆžโˆžy(t2)eโˆ’jฯ‰t2dt2]ejฯ‰tdฯ‰\frac{1}{2\pi}\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty}x(t_{1})e^{-j\omega t_{1}}dt_{1}\right]\left[\int_{-\infty}^{\infty}y(t_{2})e^{-j\omega t_{2}}dt_{2}\right]e^{j\omega t}d\omega

Rearranging the terms:

=โˆซโˆ’โˆžโˆžx(t1)[โˆซโˆ’โˆžโˆžy(t2)[12ฯ€โˆซโˆ’โˆžโˆžejฯ‰(tโˆ’t1โˆ’t2)dฯ‰]dt2]dt1=\int_{-\infty}^{\infty}x(t_{1})\left[\int_{-\infty}^{\infty}y(t_{2})\left[\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{j\omega(t-t_{1}-t_{2})}d\omega\right]dt_{2}\right]dt_{1}

The term 12ฯ€โˆซโˆ’โˆžโˆžejฯ‰(tโˆ’t1โˆ’t2)dฯ‰\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{j\omega(t-t_{1}-t_{2})}d\omega is the inverse Fourier transform of 1โ‹…ejฯ‰(tโˆ’t1โˆ’t2)1 \cdot e^{j\omega(t-t_{1}-t_{2})}, which is ฮด(tโˆ’t1โˆ’t2)\delta(t-t_{1}-t_{2}).

=โˆซโˆ’โˆžโˆžx(t1)[โˆซโˆ’โˆžโˆžy(t2)ฮด(tโˆ’t1โˆ’t2)dt2]dt1=\int_{-\infty}^{\infty}x(t_{1})\left[\int_{-\infty}^{\infty}y(t_{2})\delta(t-t_{1}-t_{2})dt_{2}\right]dt_{1}

Using the sifting property of the Dirac delta function: โˆซโˆ’โˆžโˆžy(t2)ฮด(tโˆ’t1โˆ’t2)dt2=y(tโˆ’t1)\int_{-\infty}^{\infty}y(t_{2})\delta(t-t_{1}-t_{2})dt_{2} = y(t-t_{1}).

=โˆซโˆ’โˆžโˆžx(t1)y(tโˆ’t1)dt1=\int_{-\infty}^{\infty}x(t_{1})y(t-t_{1})dt_{1}

This is the definition of the convolution x(t)โˆ—y(t)x(t)*y(t).

Output Prediction for LTI Systems

For an LTI system with impulse response h(t)h(t) and an arbitrary input signal x(t)x(t), the output y(t)y(t) is x(t)โˆ—h(t)=y(t)x(t)*h(t)=y(t).
Based on the convolution property:

Y(jฯ‰)=X(jฯ‰)H(jฯ‰)Y(j\omega) = X(j\omega)H(j\omega)

where H(jฯ‰)H(j\omega) is the systemโ€™s frequency response.
Thus, the output spectrum of an LTI system equals the input spectrum multiplied by the frequency response. This extends the frequency-domain approach to almost any input signal.

Examples of Predicting Output in the Frequency Domain

Example 4.15: Delayer System
For a delayer system y(t)=x(tโˆ’t0)y(t)=x(t-t_{0}):

  • The impulse response is h(t)=ฮด(tโˆ’t0)h(t)=\delta(t-t_{0}).
  • The frequency response is H(ฯ‰)=eโˆ’jฯ‰t0H(\omega)=e^{-j\omega t_{0}}.
  • The output spectrum is Y(ฯ‰)=eโˆ’jฯ‰t0X(ฯ‰)Y(\omega) = e^{-j\omega t_{0}}X(\omega), which is consistent with F{x(tโˆ’t0)}\mathfrak{F}\{x(t-t_{0})\}.

Example 4.16: Differentiator System
For a differentiator system y(t)=dx(t)/dty(t)=dx(t)/dt:

  • The impulse response is h(t)=dฮด(t)dth(t)=\frac{d\delta(t)}{dt}.
  • The frequency response is H(ฯ‰)=jฯ‰โ‹…1=jฯ‰H(\omega)=j\omega \cdot 1 = j\omega.
  • The output spectrum is Y(ฯ‰)=jฯ‰X(ฯ‰)Y(\omega) = j\omega X(\omega), consistent with F{dx(t)/dt}\mathfrak{F}\{dx(t)/dt\}.

Example 4.19: Convolution using Frequency Domain
Given h(t)=eโˆ’atu(t)h(t)=e^{-at}u(t) for a>0a>0 and x(t)=eโˆ’btu(t)x(t)=e^{-bt}u(t) for b>0b>0, with aโ‰ ba \ne b. Determine y(t)y(t) using the convolution property.

  • X(jฯ‰)=1b+jฯ‰X(j\omega)=\frac{1}{b+j\omega} and H(jฯ‰)=1a+jฯ‰H(j\omega)=\frac{1}{a+j\omega}.
  • Y(jฯ‰)=X(jฯ‰)H(jฯ‰)=1(a+jฯ‰)(b+jฯ‰)Y(j\omega)=X(j\omega)H(j\omega)=\frac{1}{(a+j\omega)(b+j\omega)}.
    Using partial-fraction expansion:

Y(jฯ‰)=Aa+jฯ‰+Bb+jฯ‰Y(j\omega)=\frac{A}{a+j\omega}+\frac{B}{b+j\omega}

where A=1bโˆ’aA=\frac{1}{b-a} and B=โˆ’1bโˆ’aB=-\frac{1}{b-a}.
So, Y(jฯ‰)=1bโˆ’a[1a+jฯ‰โˆ’1b+jฯ‰]Y(j\omega)=\frac{1}{b-a}\left[\frac{1}{a+j\omega}-\frac{1}{b+j\omega}\right].
Taking the inverse Fourier transform (IFT), using the pair eโˆ’ctu(t)โ†”1c+jฯ‰e^{-ct}u(t) \leftrightarrow \frac{1}{c+j\omega}:

y(t)=1bโˆ’a[eโˆ’atu(t)โˆ’eโˆ’btu(t)]y(t)=\frac{1}{b-a}[e^{-at}u(t)-e^{-bt}u(t)]


Convolution with a Periodic Impulse Train

If the impulse response is a periodic impulse train, say p(t)=โˆ‘k=โˆ’โˆžโˆžฮด(tโˆ’kT0)p(t) = \sum_{k=-\infty}^{\infty}\delta(t-kT_0), its Fourier transform is P(jฯ‰)=2ฯ€T0โˆ‘k=โˆ’โˆžโˆžฮด(ฯ‰โˆ’kฯ‰0)P(j\omega) = \frac{2\pi}{T_0}\sum_{k=-\infty}^{\infty}\delta(\omega - k\omega_0), where ฯ‰0=2ฯ€/T0\omega_0 = 2\pi/T_0.
If an input x(t)x(t) with spectrum X(jฯ‰)X(j\omega) is convolved with such a train, the output spectrum Y(jฯ‰)Y(j\omega) becomes a sampled version of X(jฯ‰)X(j\omega).

Proof of F{xT0(t)}=2ฯ€โˆ‘k=โˆ’โˆžโˆžakฮด(ฯ‰โˆ’kฯ‰0)\mathfrak{F}\{x_{T_{0}}(t)\}=2\pi\sum_{k=-\infty}^{\infty}a_{k}\delta(\omega-k\omega_{0})

Let xT0(t)x_{T_{0}}(t) be a periodic signal formed by replicating a signal x~(t)\tilde{x}(t) every T0T_0. This can be expressed as xT0(t)=x~(t)โˆ—โˆ‘k=โˆ’โˆžโˆžฮด(tโˆ’kT0)x_{T_{0}}(t)=\tilde{x}(t)*\sum_{k=-\infty}^{\infty}\delta(t-kT_{0}).
Using the convolution property:

F{xT0(t)}=X~(ฯ‰)F{โˆ‘k=โˆ’โˆžโˆžฮด(tโˆ’kT0)}\mathfrak{F}\{x_{T_{0}}(t)\}=\tilde{X}(\omega)\mathfrak{F}\left\{\sum_{k=-\infty}^{\infty}\delta(t-kT_{0})\right\}

=X~(ฯ‰)2ฯ€T0โˆ‘k=โˆ’โˆžโˆžฮด(ฯ‰โˆ’kฯ‰0)=\tilde{X}(\omega)\frac{2\pi}{T_{0}}\sum_{k=-\infty}^{\infty}\delta(\omega-k\omega_{0})

Since X~(ฯ‰)ฮด(ฯ‰โˆ’kฯ‰0)=X~(kฯ‰0)ฮด(ฯ‰โˆ’kฯ‰0)\tilde{X}(\omega)\delta(\omega-k\omega_{0}) = \tilde{X}(k\omega_{0})\delta(\omega-k\omega_{0}):

=2ฯ€T0โˆ‘k=โˆ’โˆžโˆžX~(kฯ‰0)ฮด(ฯ‰โˆ’kฯ‰0)= \frac{2\pi}{T_{0}}\sum_{k=-\infty}^{\infty}\tilde{X}(k\omega_{0})\delta(\omega-k\omega_{0})

Recognizing that the Fourier series coefficients ak=X~(kฯ‰0)T0a_k = \frac{\tilde{X}(k\omega_{0})}{T_{0}} (for one period of x~(t)\tilde{x}(t) defined from โˆ’T0/2-T_0/2 to T0/2T_0/2 or similar, and X~(ฯ‰)\tilde{X}(\omega) is the FT of one period):

=2ฯ€โˆ‘k=โˆ’โˆžโˆžakฮด(ฯ‰โˆ’kฯ‰0)= 2\pi\sum_{k=-\infty}^{\infty}a_{k}\delta(\omega-k\omega_{0})

FT Spectrum of Periodic Signals: Example - Periodic Square Wave

Let x~(t)\tilde{x}(t) be a rectangular pulse: x~(t)={1,โˆฃtโˆฃ<T10,โˆฃtโˆฃ>T1\tilde{x}(t)=\begin{cases}1,&|t|<T_{1}\\ 0,&|t|>T_{1}\end{cases}.
Its Fourier transform is X~(jฯ‰)=2sinโก(ฯ‰T1)ฯ‰=2T1sinc(T1ฯ‰ฯ€)\tilde{X}(j\omega) = \frac{2\sin(\omega T_{1})}{\omega} = 2T_{1}\text{sinc}\left(\frac{T_{1}\omega}{\pi}\right).
A periodic square wave x(t)x(t) can be seen as the convolution of x~(t)\tilde{x}(t) with an impulse train โˆ‘k=โˆ’โˆžโˆžฮด(tโˆ’kT0)\sum_{k=-\infty}^{\infty}\delta(t-kT_{0}).
Using the convolution property, the FT of the periodic square signal is:

X(jฯ‰)=X~(jฯ‰)โ‹…F{โˆ‘k=โˆ’โˆžโˆžฮด(tโˆ’kT0)}X(j\omega) = \tilde{X}(j\omega) \cdot \mathfrak{F}\left\{\sum_{k=-\infty}^{\infty}\delta(t-kT_{0})\right\}

X(jฯ‰)=2T1sinc(T1ฯ‰ฯ€)โ‹…2ฯ€T0โˆ‘k=โˆ’โˆžโˆžฮด(ฯ‰โˆ’2ฯ€T0k)=4ฯ€T1T0sinc(T1ฯ‰ฯ€)โˆ‘k=โˆ’โˆžโˆžฮด(ฯ‰โˆ’2ฯ€T0k)\begin{align} X(j\omega) &= 2T_{1}\text{sinc}\left(\frac{T_{1}\omega}{\pi}\right) \cdot \frac{2\pi}{T_{0}}\sum_{k=-\infty}^{\infty}\delta\left(\omega-\frac{2\pi}{T_{0}}k\right) \\ &= \frac{4\pi T_{1}}{T_{0}}\text{sinc}\left(\frac{T_{1}\omega}{\pi}\right)\sum_{k=-\infty}^{\infty}\delta\left(\omega-\frac{2\pi}{T_{0}}k\right) \end{align}

This means the spectrum is a series of impulses at multiples of ฯ‰0=2ฯ€/T0\omega_0 = 2\pi/T_0, where the strength of each impulse is scaled by the sinc function.


Predicting Output for Interconnected Systems

The overall frequency response H(jฯ‰)H(j\omega) for interconnected LTI systems can be found as follows:

  • Series (Cascaded) Interconnection:
image-20250608195328336

H(jฯ‰)=H1(jฯ‰)H2(jฯ‰)H(j\omega)=H_{1}(j\omega)H_{2}(j\omega)

  • Parallel Interconnection:

    image-20250608195441691

H(jฯ‰)=H1(jฯ‰)+H2(jฯ‰)H(j\omega)=H_{1}(j\omega)+H_{2}(j\omega)

  • Feedback Interconnection:

    image-20250523153301651

Input x(t)x(t), output y(t)y(t). Forward path H1(jฯ‰)H_1(j\omega), feedback path H2(jฯ‰)H_2(j\omega), negative feedback.

The corrected input signal is Z(jฯ‰)=X(jฯ‰)โˆ’Y(jฯ‰)H2(jฯ‰)Z(j\omega)=X(j\omega)-Y(j\omega)H_{2}(j\omega).

The output is Y(jฯ‰)=Z(jฯ‰)H1(jฯ‰)Y(j\omega)=Z(j\omega)H_{1}(j\omega).

Substituting Z(jฯ‰)Z(j\omega):

Y(jฯ‰)=[X(jฯ‰)โˆ’Y(jฯ‰)H2(jฯ‰)]H1(jฯ‰)=X(jฯ‰)H1(jฯ‰)โˆ’Y(jฯ‰)H2(jฯ‰)H1(jฯ‰)\begin{align} Y(j\omega)&=[X(j\omega)-Y(j\omega)H_{2}(j\omega)]H_{1}(j\omega) \\ &= X(j\omega)H_{1}(j\omega) - Y(j\omega)H_{2}(j\omega)H_{1}(j\omega) \end{align}

Then, there is

Y(jฯ‰)[1+H1(jฯ‰)H2(jฯ‰)]=X(jฯ‰)H1(jฯ‰)Y(j\omega)[1+H_{1}(j\omega)H_{2}(j\omega)] = X(j\omega)H_{1}(j\omega)

Therefore,

H(jฯ‰)=Y(jฯ‰)X(jฯ‰)=H1(jฯ‰)1+H1(jฯ‰)H2(jฯ‰)H(j\omega)=\frac{Y(j\omega)}{X(j\omega)}=\frac{H_{1}(j\omega)}{1+H_{1}(j\omega)H_{2}(j\omega)}

Example: System with Differentiator and Feedback

image-20250608200126357

Consider a system with x(t)x(t) as input. The error signal e(t)e(t) is x(t)+(โˆ’3y(t))=x(t)โˆ’3y(t)x(t) + (-3y(t)) = x(t) - 3y(t). The block DD is a differentiator, so y(t)=de(t)dty(t) = \frac{de(t)}{dt}.
In the frequency domain:

{E(jฯ‰)=X(jฯ‰)โˆ’3Y(jฯ‰)Y(jฯ‰)=jฯ‰E(jฯ‰)\begin{cases} E(j\omega) = X(j\omega) - 3Y(j\omega) \\ Y(j\omega) = j\omega E(j\omega) \end{cases}

So,

Y(jฯ‰)=jฯ‰(X(jฯ‰)โˆ’3Y(jฯ‰))โ€…โ€ŠโŸนโ€…โ€ŠY(jฯ‰)=jฯ‰X(jฯ‰)โˆ’3jฯ‰Y(jฯ‰)โ€…โ€ŠโŸนโ€…โ€ŠY(jฯ‰)(1+3jฯ‰)=jฯ‰X(jฯ‰)Y(j\omega) = j\omega (X(j\omega)-3Y(j\omega)) \implies Y(j\omega) = j\omega X(j\omega) - 3j\omega Y(j\omega) \implies Y(j\omega)(1+3j\omega) = j\omega X(j\omega)

The frequency response is:

H(jฯ‰)=Y(jฯ‰)X(jฯ‰)=jฯ‰1+3jฯ‰H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{j\omega}{1+3j\omega}

This can be rewritten using partial fractions:

H(jฯ‰)=jฯ‰3(jฯ‰+1/3)=133jฯ‰3jฯ‰+1=13(3jฯ‰+1)โˆ’13jฯ‰+1=13(1โˆ’11+3jฯ‰)=13โˆ’1311+3jฯ‰=13โˆ’191jฯ‰+1/3H(j\omega) = \frac{j\omega}{3(j\omega + 1/3)} = \frac{1}{3} \frac{3j\omega}{3j\omega+1} = \frac{1}{3} \frac{ (3j\omega+1) - 1}{3j\omega+1} = \frac{1}{3}\left(1 - \frac{1}{1+3j\omega}\right) = \frac{1}{3} - \frac{1}{3} \frac{1}{1+3j\omega} = \frac{1}{3} - \frac{1}{9} \frac{1}{j\omega + 1/3}

The impulse response h(t)h(t) is the IFT of H(jฯ‰)H(j\omega):

h(t)=13ฮด(t)โˆ’19eโˆ’t/3u(t)h(t) = \frac{1}{3}\delta(t) - \frac{1}{9}e^{-t/3}u(t)


Predicting Outputs for LCCDE Systems

  • A system described by a Linear Constant-Coefficient Differential Equation (LCCDE) is an incrementally LTI system.

  • The total response y(t)y(t) is the sum of the zero-state response yzs(t)y_{zs}(t) and the zero-input response yzi(t)y_{zi}(t).

    y(t)=yzs(t)+yzi(t)y(t) = y_{zs}(t) + y_{zi}(t)

  • The zero-state response is the output of an LTI subsystem and can be predicted in the frequency domain.

Generating Frequency Response from LCCDE

Given an LCCDE:

โˆ‘k=0Nakdky(t)dtk=โˆ‘k=0Mbkdkx(t)dtk\sum_{k=0}^{N}a_{k}\frac{d^{k}y(t)}{dt^{k}} = \sum_{k=0}^{M}b_{k}\frac{d^{k}x(t)}{dt^{k}}

Apply Fourier transform to both sides. Using the differentiation property F{dkf(t)dtk}=(jฯ‰)kF(jฯ‰)\mathfrak{F}\left\{\frac{d^{k}f(t)}{dt^{k}}\right\} = (j\omega)^{k}F(j\omega):

โˆ‘k=0Nak(jฯ‰)kY(jฯ‰)=โˆ‘k=0Mbk(jฯ‰)kX(jฯ‰)\sum_{k=0}^{N}a_{k}(j\omega)^{k}Y(j\omega) = \sum_{k=0}^{M}b_{k}(j\omega)^{k}X(j\omega)

Rearranging for the frequency response H(jฯ‰)=Y(jฯ‰)/X(jฯ‰)H(j\omega) = Y(j\omega)/X(j\omega) (this specifically gives the frequency response of the LTI subsystem for the zero-state response):

H(jฯ‰)=โˆ‘k=0Mbk(jฯ‰)kโˆ‘k=0Nak(jฯ‰)kH(j\omega) = \frac{\sum_{k=0}^{M}b_{k}(j\omega)^{k}}{\sum_{k=0}^{N}a_{k}(j\omega)^{k}}

This is the general expression for the frequency response of a stable LCCDE systemโ€™s LTI part.

Example 4.25: Impulse Response of a 2nd-order LCCDE System
Given the LCCDE: d2y(t)dt2+4dy(t)dt+3y(t)=dx(t)dt+2x(t)\frac{d^{2}y(t)}{dt^{2}}+4\frac{dy(t)}{dt}+3y(t)=\frac{dx(t)}{dt}+2x(t). Assume the system is stable.
Taking the Fourier transform:

(jฯ‰)2Y(jฯ‰)+4(jฯ‰)Y(jฯ‰)+3Y(jฯ‰)=(jฯ‰)X(jฯ‰)+2X(jฯ‰)(j\omega)^{2}Y(j\omega)+4(j\omega)Y(j\omega)+3Y(j\omega)=(j\omega)X(j\omega)+2X(j\omega)

[(jฯ‰)2+4jฯ‰+3]Y(jฯ‰)=(jฯ‰+2)X(jฯ‰)[(j\omega)^{2}+4j\omega+3]Y(j\omega)=(j\omega+2)X(j\omega)

The frequency response is:

H(jฯ‰)=jฯ‰+2(jฯ‰)2+4jฯ‰+3=jฯ‰+2(jฯ‰+1)(jฯ‰+3)H(j\omega)=\frac{j\omega+2}{(j\omega)^{2}+4j\omega+3} = \frac{j\omega+2}{(j\omega+1)(j\omega+3)}

Using partial-fraction expansion:

H(jฯ‰)=Ajฯ‰+1+Bjฯ‰+3H(j\omega)=\frac{A}{j\omega+1}+\frac{B}{j\omega+3}

A(jฯ‰+3)+B(jฯ‰+1)=jฯ‰+2A(j\omega+3) + B(j\omega+1) = j\omega+2.
If jฯ‰=โˆ’1j\omega = -1, A(โˆ’1+3)=โˆ’1+2โ‡’2A=1โ‡’A=1/2A(-1+3) = -1+2 \Rightarrow 2A = 1 \Rightarrow A = 1/2.
If jฯ‰=โˆ’3j\omega = -3, B(โˆ’3+1)=โˆ’3+2โ‡’โˆ’2B=โˆ’1โ‡’B=1/2B(-3+1) = -3+2 \Rightarrow -2B = -1 \Rightarrow B = 1/2.
So,

H(jฯ‰)=12jฯ‰+1+12jฯ‰+3H(j\omega)=\frac{\frac{1}{2}}{j\omega+1}+\frac{\frac{1}{2}}{j\omega+3}

The impulse response (for the stable system) is:

h(t)=12eโˆ’tu(t)+12eโˆ’3tu(t)h(t)=\frac{1}{2}e^{-t}u(t)+\frac{1}{2}e^{-3t}u(t)

Example 4.26: Output for a given input
For the same system, find the output y(t)y(t) for x(t)=eโˆ’tu(t)x(t)=e^{-t}u(t).
X(jฯ‰)=1jฯ‰+1X(j\omega) = \frac{1}{j\omega+1}.
Y(jฯ‰)=H(jฯ‰)X(jฯ‰)=[jฯ‰+2(jฯ‰+1)(jฯ‰+3)][1jฯ‰+1]=jฯ‰+2(jฯ‰+1)2(jฯ‰+3)Y(j\omega)=H(j\omega)X(j\omega)=\left[\frac{j\omega+2}{(j\omega+1)(j\omega+3)}\right]\left[\frac{1}{j\omega+1}\right] = \frac{j\omega+2}{(j\omega+1)^{2}(j\omega+3)}.
Using partial-fraction expansion for repeated roots:

Y(jฯ‰)=A11jฯ‰+1+A12(jฯ‰+1)2+A21jฯ‰+3Y(j\omega)=\frac{A_{11}}{j\omega+1}+\frac{A_{12}}{(j\omega+1)^{2}}+\frac{A_{21}}{j\omega+3}

The coefficients are given as A11=14,A12=12,A21=โˆ’14A_{11}=\frac{1}{4}, A_{12}=\frac{1}{2}, A_{21}=-\frac{1}{4}.
Thus, the zero-state response is:

yzs(t)=[14eโˆ’t+12teโˆ’tโˆ’14eโˆ’3t]u(t)y_{zs}(t)=\left[\frac{1}{4}e^{-t}+\frac{1}{2}te^{-t}-\frac{1}{4}e^{-3t}\right]u(t)

Caveats

  1. Stability:

    1. To use this Fourier transform method for LCCDEs, we usually require the system to be stable.
    2. Stability (BIBO) implies h(t)h(t) is absolutely integrable, which is a Dirichlet condition for the convergence of H(jฯ‰)H(j\omega).
  2. Zero-State Response:

    1. This frequency response method directly predicts the zero-state response.
    2. If initial conditions are zero, or the system is LTI (implying initial rest for causality), then the full response is the zero-state response. Otherwise, the zero-input response must be solved separately (e.g., using the characteristic polynomial method).

Exercise: RC Circuit (Analog Lowpass Filter)

Consider an RC circuit with input voltage VinV_{in} (or vs(t)v_s(t)) across a series resistor R and capacitor C. The output voltage VoutV_{out} (or vc(t)v_c(t)) is across the capacitor.
LCCDE: RCdvc(t)dt+vc(t)=vs(t)RC\frac{dv_{c}(t)}{dt}+v_{c}(t)=v_{s}(t), which can be written as dvc(t)dt+1RCvc(t)=1RCvs(t)\frac{dv_{c}(t)}{dt}+\frac{1}{RC}v_{c}(t)=\frac{1}{RC}v_{s}(t).
Frequency Response:
Taking FT: RCjฯ‰Vc(jฯ‰)+Vc(jฯ‰)=Vs(jฯ‰)RCj\omega V_{c}(j\omega)+V_{c}(j\omega)=V_{s}(j\omega).
Vc(jฯ‰)(RCjฯ‰+1)=Vs(jฯ‰)V_{c}(j\omega)(RCj\omega+1)=V_{s}(j\omega).

H(jฯ‰)=Vc(jฯ‰)Vs(jฯ‰)=11+RCjฯ‰H(j\omega)=\frac{V_{c}(j\omega)}{V_{s}(j\omega)}=\frac{1}{1+RCj\omega}

Magnitude Spectrum:

โˆฃH(jฯ‰)โˆฃ=11+(RCฯ‰)2|H(j\omega)|=\frac{1}{\sqrt{1+(RC\omega)^{2}}}

This system acts as an analog first-order lowpass filter. It allows low-frequency signals to pass while attenuating high-frequency signals.


Multiplication Property

The multiplication property is dual to the convolution property.
If s(t)โ†”S(jฯ‰)s(t)\leftrightarrow S(j\omega) and p(t)โ†”P(jฯ‰)p(t)\leftrightarrow P(j\omega), then:

r(t)=s(t)โ‹…p(t)โ†”R(jฯ‰)=12ฯ€[S(jฯ‰)โˆ—P(jฯ‰)]r(t)=s(t) \cdot p(t)\leftrightarrow R(j\omega)=\frac{1}{2\pi}[S(j\omega)*P(j\omega)]

Multiplication in the time domain corresponds to convolution in the frequency domain (scaled by 1/(2ฯ€)1/(2\pi)).

Proof (using duality)

  1. Given s(t)โ†”S(ฯ‰)s(t)\leftrightarrow S(\omega) and p(t)โ†”P(ฯ‰)p(t)\leftrightarrow P(\omega).
  2. By duality, S(t)โ†”2ฯ€s(โˆ’ฯ‰)S(t)\leftrightarrow 2\pi s(-\omega) and P(t)โ†”2ฯ€p(โˆ’ฯ‰)P(t)\leftrightarrow 2\pi p(-\omega).
  3. Using the convolution property: S(t)โˆ—P(t)โ†”(2ฯ€s(โˆ’ฯ‰))(2ฯ€p(โˆ’ฯ‰))=4ฯ€2s(โˆ’ฯ‰)p(โˆ’ฯ‰)S(t)*P(t)\leftrightarrow (2\pi s(-\omega))(2\pi p(-\omega)) = 4\pi^{2}s(-\omega)p(-\omega).
  4. Let g(t)=S(t)โˆ—P(t)g(t) = S(t)*P(t) and G(ฯ‰)=4ฯ€2s(โˆ’ฯ‰)p(โˆ’ฯ‰)G(\omega) = 4\pi^{2}s(-\omega)p(-\omega).
  5. Applying duality again to g(t)โ†”G(ฯ‰)g(t) \leftrightarrow G(\omega): G(t)โ†”2ฯ€g(โˆ’ฯ‰)G(t) \leftrightarrow 2\pi g(-\omega).
    4ฯ€2s(โˆ’t)p(โˆ’t)โ†”2ฯ€[S(โˆ’ฯ‰)โˆ—P(โˆ’ฯ‰)]4\pi^{2}s(-t)p(-t) \leftrightarrow 2\pi [S(-\omega)*P(-\omega)].
    Replacing tt with โˆ’t-t: 4ฯ€2s(t)p(t)โ†”2ฯ€[S(ฯ‰)โˆ—P(ฯ‰)]4\pi^{2}s(t)p(t) \leftrightarrow 2\pi [S(\omega)*P(\omega)] (assuming SS and PP are transforms from tโ†’ฯ‰t \to \omega, so the convolution arguments become ฯ‰\omega).
    Therefore, s(t)p(t)โ†”12ฯ€[S(jฯ‰)โˆ—P(jฯ‰)]s(t)p(t) \leftrightarrow \frac{1}{2\pi}[S(j\omega)*P(j\omega)].

Example 4.23: FT of a product of sinc functions
Find the Fourier transform of

x(t)=sinโก(t)sinโก(t/2)ฯ€t2x(t)=\frac{\sin(t)\sin(t/2)}{\pi t^{2}}

Rewrite x(t)x(t) as:

x(t)=ฯ€(sinโก(t)ฯ€t)(sinโก(t/2)ฯ€t)x(t)=\pi\left(\frac{\sin(t)}{\pi t}\right)\left(\frac{\sin(t/2)}{\pi t}\right)

Let s1(t)=sinโก(t)ฯ€ts_1(t) = \frac{\sin(t)}{\pi t} and s2(t)=sinโก(t/2)ฯ€ts_2(t) = \frac{\sin(t/2)}{\pi t}.

We know that

F{sinโก(Wt)ฯ€t}=rect(ฯ‰2W)={1,โˆฃฯ‰โˆฃ<W0,โˆฃฯ‰โˆฃ>W\mathfrak{F}\{\frac{\sin(Wt)}{\pi t}\} = \text{rect}(\frac{\omega}{2W}) = \begin{cases} 1, & |\omega| < W \\ 0, & |\omega| > W \end{cases}

So, S1(jฯ‰)=rect(ฯ‰2)S_1(j\omega) = \text{rect}(\frac{\omega}{2}) (i.e., 1 for โˆฃฯ‰โˆฃ<1|\omega|<1, 0 otherwise).
And S2(jฯ‰)=rect(ฯ‰)S_2(j\omega) = \text{rect}(\omega) (i.e., 1 for โˆฃฯ‰โˆฃ<1/2|\omega|<1/2, 0 otherwise, because W=1/2W=1/2).

X(jฯ‰)=ฯ€โ‹…12ฯ€[S1(jฯ‰)โˆ—S2(jฯ‰)]=12[S1(jฯ‰)โˆ—S2(jฯ‰)]X(j\omega) = \pi \cdot \frac{1}{2\pi} [S_1(j\omega) * S_2(j\omega)] = \frac{1}{2}[S_1(j\omega) * S_2(j\omega)]

This is the convolution of two rectangular functions.
S1(jฯ‰)S_1(j\omega) is a rectangle from ฯ‰=โˆ’1\omega=-1 to 11 with height 1.
S2(jฯ‰)S_2(j\omega) is a rectangle from ฯ‰=โˆ’1/2\omega=-1/2 to 1/21/2 with height 1.
The convolution of these two rectangular pulses will result in a trapezoidal๏ผˆๆขฏๅฝข๏ผ‰ pulse.
The convolution will range from (โˆ’1โˆ’1/2)(-1 - 1/2) to (1+1/2)(1 + 1/2), i.e., from โˆ’3/2-3/2 to 3/23/2.
The flat top will be from (โˆ’1+1/2)(-1+1/2) to (1โˆ’1/2)(1-1/2), i.e., from โˆ’1/2-1/2 to 1/21/2. The height of the convolution is Area(S2(jฯ‰)S_2(j\omega)) = 1ร—1=11 \times 1 = 1.
So X(jฯ‰)X(j\omega) will be a trapezoid with:

  • Value 00 for ฯ‰<โˆ’3/2\omega < -3/2 and ฯ‰>3/2\omega > 3/2.
  • Linearly increasing from 00 at ฯ‰=โˆ’3/2\omega=-3/2 to 1/2ร—1=1/21/2 \times 1 = 1/2 at ฯ‰=โˆ’1/2\omega=-1/2.
  • Constant value 1/21/2 for โˆ’1/2โ‰คฯ‰โ‰ค1/2-1/2 \le \omega \le 1/2.
  • Linearly decreasing from 1/21/2 at ฯ‰=1/2\omega=1/2 to 00 at ฯ‰=3/2\omega=3/2.

Modulation and Demodulation

Modulation System (Example 4.21)

Assume a bandlimited signal s(t)s(t) with spectrum S(jฯ‰)S(j\omega) (bandlimited to ฯ‰1\omega_1, i.e., S(jฯ‰)=0S(j\omega)=0 for โˆฃฯ‰โˆฃ>ฯ‰1|\omega| > \omega_1).
Multiply s(t)s(t) with a high-frequency sinusoidal function p(t)=cosโก(ฯ‰0t)p(t) = \cos(\omega_0 t), where ฯ‰0โ‰ซฯ‰1\omega_0 \gg \omega_1.
The Fourier transform of p(t)=cosโก(ฯ‰0t)p(t)=\cos(\omega_0 t) is P(jฯ‰)=ฯ€[ฮด(ฯ‰โˆ’ฯ‰0)+ฮด(ฯ‰+ฯ‰0)]P(j\omega) = \pi[\delta(\omega-\omega_0) + \delta(\omega+\omega_0)].
The resulting signal is r(t)=s(t)p(t)r(t) = s(t)p(t).
Its spectrum R(jฯ‰)R(j\omega) is given by the multiplication property:

R(jฯ‰)=12ฯ€[S(jฯ‰)โˆ—P(jฯ‰)]R(j\omega) = \frac{1}{2\pi}[S(j\omega) * P(j\omega)]

R(jฯ‰)=12ฯ€[S(jฯ‰)โˆ—(ฯ€[ฮด(ฯ‰โˆ’ฯ‰0)+ฮด(ฯ‰+ฯ‰0)])]R(j\omega) = \frac{1}{2\pi}[S(j\omega) * (\pi[\delta(\omega-\omega_0) + \delta(\omega+\omega_0)])]

R(jฯ‰)=12[S(jฯ‰)โˆ—ฮด(ฯ‰โˆ’ฯ‰0)+S(jฯ‰)โˆ—ฮด(ฯ‰+ฯ‰0)]R(j\omega) = \frac{1}{2}[S(j\omega) * \delta(\omega-\omega_0) + S(j\omega) * \delta(\omega+\omega_0)]

Using the sifting property of convolution with an impulse:

S(jฯ‰)โˆ—ฮด(ฯ‰โˆ’ฯ‰c)=S(j(ฯ‰โˆ’ฯ‰c))S(j\omega) * \delta(\omega-\omega_c) = S(j(\omega-\omega_c))

R(jฯ‰)=12[S(j(ฯ‰โˆ’ฯ‰0))+S(j(ฯ‰+ฯ‰0))]R(j\omega) = \frac{1}{2}[S(j(\omega-\omega_0)) + S(j(\omega+\omega_0))]

This means the original spectrum S(jฯ‰)S(j\omega) is shifted to ยฑฯ‰0\pm\omega_0 and scaled by 1/21/2. This is amplitude modulation.

image-20250608210148822

Demodulation System (Example 4.22)

๏ผˆๅŒๆญฅ่งฃ่ฐƒ๏ผ‰

To recover the original signal s(t)s(t) from the modulated signal r(t)r(t):

  1. Multiply r(t)r(t) with p(t)=cosโก(ฯ‰0t)p(t) = \cos(\omega_0 t) again:
    • Let g(t)=r(t)p(t)g(t) = r(t)p(t).
      G(jฯ‰)=12ฯ€[R(jฯ‰)โˆ—P(jฯ‰)]G(j\omega) = \frac{1}{2\pi}[R(j\omega) * P(j\omega)]
      R(jฯ‰)R(j\omega) has components centered at ยฑฯ‰0\pm\omega_0. P(jฯ‰)P(j\omega) has impulses at ยฑฯ‰0\pm\omega_0.
    • Convolution will result in:
      G(jฯ‰)=12[R(j(ฯ‰โˆ’ฯ‰0))+R(j(ฯ‰+ฯ‰0))]G(j\omega) = \frac{1}{2}[R(j(\omega-\omega_0)) + R(j(\omega+\omega_0))]
    • Substituting R(jฯ‰)=12[S(j(ฯ‰โˆ’ฯ‰0))+S(j(ฯ‰+ฯ‰0))]R(j\omega) = \frac{1}{2}[S(j(\omega-\omega_0)) + S(j(\omega+\omega_0))]:
      G(jฯ‰)=12[12(S(j(ฯ‰โˆ’2ฯ‰0))+S(jฯ‰))+12(S(jฯ‰)+S(j(ฯ‰+2ฯ‰0)))]G(j\omega) = \frac{1}{2} \left[ \frac{1}{2}(S(j(\omega-2\omega_0)) + S(j\omega)) + \frac{1}{2}(S(j\omega) + S(j(\omega+2\omega_0))) \right]
      G(jฯ‰)=12S(jฯ‰)+14S(j(ฯ‰โˆ’2ฯ‰0))+14S(j(ฯ‰+2ฯ‰0))G(j\omega) = \frac{1}{2}S(j\omega) + \frac{1}{4}S(j(\omega-2\omega_0)) + \frac{1}{4}S(j(\omega+2\omega_0))
    • The spectrum G(jฯ‰)G(j\omega) contains the original baseband spectrum S(jฯ‰)S(j\omega) (scaled by 1/21/2) centered at ฯ‰=0\omega=0, plus copies centered at ยฑ2ฯ‰0\pm 2\omega_0.
  2. Apply a Lowpass Filter:
    • Pass g(t)g(t) through a lowpass filter HLPF(jฯ‰)H_{LPF}(j\omega) that keeps frequencies up to ฯ‰1\omega_1 (and removes components around ยฑ2ฯ‰0\pm 2\omega_0).
    • The output will be 12S(jฯ‰)\frac{1}{2}S(j\omega), which is a scaled version of the original signalโ€™s spectrum.
    • This modulation/demodulation process is invertible.
image-20250608211323225

Wireless Transmission (Frequency Division Multiplexing)

Modulation is used in wireless transmission to send multiple signals over the same channel by modulating them onto different carrier frequencies.

  • Transmitter Side: Multiple signals (e.g., voices) are modulated using different carrier frequencies (e.g., cosโก(2ฯ€f1t)\cos(2\pi f_1 t), cosโก(2ฯ€f2t)\cos(2\pi f_2 t), etc.). The modulated signals are then added together. In the frequency domain, their spectra are shifted to different frequency bands and do not overlap.
  • Receiver Side: To recover a specific signal (e.g., signal 1):
    1. Multiply the combined received signal by the corresponding carrier frequency (e.g., cosโก(2ฯ€f1t)\cos(2\pi f_1 t)). This shifts the desired signalโ€™s spectrum back to baseband (around ฯ‰=0\omega=0) and other signals to other frequencies.
    2. Apply a lowpass filter to extract the baseband signal, recovering the original signal.
      This technique is known as Amplitude Modulation (AM).

Generating a Bandpass Filter from a Lowpass Filter

A bandpass filter can be created from an ideal lowpass filter HLP(jฯ‰)H_{LP}(j\omega) (with cutoff ฯ‰c\omega_c) using modulation.

  1. Let the input signal be x(t)x(t) and its spectrum X(jฯ‰)X(j\omega).
  2. Modulate the input signal: x(t)ejฯ‰ctx(t)e^{j\omega_c t}. Its spectrum is X(j(ฯ‰โˆ’ฯ‰c))X(j(\omega-\omega_c)).
  3. Pass this through the lowpass filter HLP(jฯ‰)H_{LP}(j\omega). The output spectrum is HLP(jฯ‰)X(j(ฯ‰โˆ’ฯ‰c))H_{LP}(j\omega)X(j(\omega-\omega_c)). This is a version of X(jฯ‰)X(j\omega) that was originally around ฯ‰c\omega_c, now shifted to baseband and filtered.
  4. Take the real part of the output signal

Re{f(t)}=f(t)+fโˆ—(t)2โ†’FF(jฯ‰)+Fโˆ—(โˆ’jฯ‰)2\mathfrak{Re} \{f(t)\} = \frac{f(t) + f^*(t)}{2} \stackrel{\mathcal{F}}{\rightarrow} \frac{F(j\omega) + F^*(-j\omega)}{2}

To create a bandpass filter centered at ฯ‰c\omega_c:

  • Consider an ideal lowpass filter HLP(jฯ‰)H_{LP}(j\omega) which is 1 for โˆฃฯ‰โˆฃ<ฯ‰0|\omega| < \omega_0 and 0 otherwise.
  • The frequency response of an ideal bandpass filter centered at ยฑฯ‰c\pm\omega_c with bandwidth 2ฯ‰02\omega_0 can be thought of as

HBP(jฯ‰)=HLP(j(ฯ‰โˆ’ฯ‰c))+HLP(j(ฯ‰+ฯ‰c))H_{BP}(j\omega) = H_{LP}(j(\omega-\omega_c)) + H_{LP}(j(\omega+\omega_c))

  • Alternatively, to create a real bandpass filter hBP(t)h_{BP}(t) from a real lowpass filter hLP(t)h_{LP}(t):

hBP(t)=2hLP(t)cosโก(ฯ‰ct)h_{BP}(t) = 2h_{LP}(t)\cos(\omega_c t)

  • In the frequency domain:

HBP(jฯ‰)=HLP(j(ฯ‰โˆ’ฯ‰c))+HLP(j(ฯ‰+ฯ‰c))H_{BP}(j\omega) = H_{LP}(j(\omega-\omega_c)) + H_{LP}(j(\omega+\omega_c))

  • This effectively shifts the lowpass response to ยฑฯ‰c\pm\omega_c.
image-20250608213246070
0%