∑k=−∞+∞akejkω0t |
2π∑k=−∞+∞akδ(ω−kω0) |
ak |
ejω0t |
2πδ(ω−ω0) |
a1=1, ak=0, otherwise |
cosω0t |
π[δ(ω−ω0)+δ(ω+ω0)] |
a1=21, ak=0, otherwise |
sinω0t |
jπ[δ(ω−ω0)−δ(ω+ω0)] |
a1=−2j1, ak=0, otherwise |
x(t)=1 |
2πδ(ω) |
a0=1, ak=0, k=0 |
Periodic square wave x(t)={1,0,∣t∣<T1T1<∣t∣≤2τ x(t+T)=x(t) |
∑k=−∞+∞k2sinkω0T1δ(ω−kω0) |
πω0T1sinc(πkω0T1)=kπsinkω0T1 |
∑n=−∞∞δ(t−nT) |
T2π∑k=−∞∞δ(ω−T2πk) |
ak=T1 for all k |
x(t)={1,0,∣t∣<T1∣t∣>T1 |
ω2sinωT1 |
- |
πtsinWt |
X(jω)={1,0,∣ω∣<W∣ω∣>W |
- |
δ(t) |
1 |
- |
u(t) |
jω1+πδ(ω) |
- |
δ(t−t0) |
e−jωt0 |
- |
e−atu(t),ℜ(a)>0 |
a+jω1 |
- |
te−atu(t),ℜ(a)>0 |
(a+jω)21 |
- |
n!tne−atu(t),ℜ(a)>0 |
(a+jω)n+11 |
- |