Fourier Transform Table

Table: Properties of FT

Property Aperiodic signal Fourier transform
x(t)x(t) X(jω)X(j\omega)
y(t)y(t) Y(jω)Y(j\omega)
Linearity ax(t)+by(t)ax(t) + by(t) aX(jω)+bY(jω)aX(j\omega) + bY(j\omega)
Time Shifting x(tt0)x(t - t_0) ejωt0X(jω)e^{-j\omega t_0} X(j\omega)
Frequency Shifting ejω0tx(t)e^{j\omega_0 t} x(t) X(j(ωω0))X(j(\omega - \omega_0))
Conjugation x(t)x^*(t) X(jω)X^*(-j\omega)
Time Reversal x(t)x(-t) X(jω)X(-j\omega)
Time and Frequency Scaling x(at)x(at) 1aX(jωa)\frac{1}{ \lvert a \lvert } X\left(\frac{j\omega}{a}\right)
Convolution x(t)y(t)x(t) * y(t) X(jω)Y(jω)X(j\omega)Y(j\omega)
Multiplication x(t)y(t)x(t)y(t) 12πX(jθ)Y(j(ωθ))dθ\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\theta)Y(j(\omega - \theta)) d\theta
Differentiation in Time ddtx(t)\frac{d}{dt} x(t) jωX(jω)j\omega X(j\omega)
Integration tx(τ)dτ\int_{-\infty}^{t} x(\tau) d\tau 1jωX(jω)+πX(0)δ(ω)\frac{1}{j\omega} X(j\omega) + \pi X(0) \delta(\omega)
Differentiation in Frequency tx(t)t x(t) jddωX(jω)j \frac{d}{d\omega} X(j\omega)
Conjugate Symmetry for Real Signals x(t)x(t) real X(jω)=X(jω)X(j\omega) = X^*(-j\omega)
Re{X(jω)}=Re{X(jω)}\mathfrak{Re}\{X(j\omega)\} = \mathfrak{Re}\{X(-j\omega)\}
Im{X(jω)}=Im{X(jω)}\mathfrak{Im}\{X(j\omega)\} = -\mathfrak{Im}\{X(-j\omega)\}
X(jω)=X(jω)\lvert X(j\omega) \rvert = \lvert X(-j\omega) \rvert
X(jω)=X(jω)\angle X(j\omega) = -\angle X(-j\omega)
Symmetry for Real and Even Signals x(t)x(t) real and even X(jω)X(j\omega) real and even
Symmetry for Real and Odd Signals x(t)x(t) real and odd X(jω)X(j\omega) purely imaginary and odd
Even-Odd Decomposition for Real Signals xe(t)=Ev{x(t)}x_e(t) = \mathcal{Ev}\{x(t)\}
xo(t)=Od{x(t)}x_o(t) = \mathcal{Od}\{x(t)\}
Re{X(jω)}\mathfrak{Re}\{X(j\omega)\}
jIm{X(jω)}j\mathfrak{Im}\{X(j\omega)\}
Parseval’s Relation for Aperiodic Signals x(t)2dt=12πX(jω)2dω\int_{-\infty}^{\infty} \lvert x(t) \rvert ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \lvert X(j\omega) \rvert ^2 d\omega

Table: Commonly Used FT

Signal Fourier Transform Fourier Series Coefficients (if periodic)
k=+akejkω0t\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} 2πk=+akδ(ωkω0)2\pi \sum_{k=-\infty}^{+\infty} a_k \delta(\omega - k\omega_0) aka_k
ejω0te^{j\omega_0 t} 2πδ(ωω0)2\pi \delta(\omega - \omega_0) a1=1a_1 = 1,
ak=0a_k = 0, otherwise
cosω0t\cos \omega_0 t π[δ(ωω0)+δ(ω+ω0)]\pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] a1=12a_1 = \frac{1}{2},
ak=0a_k = 0, otherwise
sinω0t\sin \omega_0 t πj[δ(ωω0)δ(ω+ω0)]\frac{\pi}{j}[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] a1=12ja_1 = -\frac{1}{2j}, ak=0a_k = 0, otherwise
x(t)=1x(t) = 1 2πδ(ω)2\pi \delta(\omega) a0=1a_0 = 1, ak=0a_k = 0, k0k \neq 0
Periodic square wave
x(t)={1,t<T10,T1<tτ2x(t) = \begin{cases} 1, & \lvert t \rvert < T_1 \\ 0, & T_1 < \lvert t\lvert \leq \frac{\tau}{2} \end{cases}
x(t+T)=x(t)x(t + T) = x(t)
k=+2sinkω0T1kδ(ωkω0)\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0) ω0T1πsinc(kω0T1π)=sinkω0T1kπ\frac{\omega_0 T_1}{\pi} \text{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}
n=δ(tnT)\sum_{n=-\infty}^{\infty} \delta(t - nT) 2πTk=δ(ω2πkT)\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi k}{T}) ak=1Ta_k = \frac{1}{T} for all kk
x(t)={1,t<T10,t>T1x(t) = \begin{cases} 1, & \lvert t \lvert < T_1 \\ 0, & \lvert t\lvert > T_1 \end{cases} 2sinωT1ω\frac{2\sin\omega T_1}{\omega} -
sinWtπt\frac{\sin Wt}{\pi t} X(jω)={1,ω<W0,ω>WX(j\omega) = \begin{cases} 1, & \lvert \omega \lvert < W \\ 0, & \lvert \omega \lvert > W \end{cases} -
δ(t)\delta(t) 11 -
u(t)u(t) 1jω+πδ(ω)\frac{1}{j\omega} + \pi \delta(\omega) -
δ(tt0)\delta(t - t_0) ejωt0e^{-j\omega t_0} -
eatu(t),(a)>0e^{-a t}u(t), \Re(a) > 0 1a+jω\frac{1}{a + j\omega} -
teatu(t),(a)>0t e^{-a t}u(t), \Re(a) > 0 1(a+jω)2\frac{1}{(a + j\omega)^2} -
tnn!eatu(t),(a)>0\frac{t^n}{n!}e^{-a t}u(t), \Re(a) > 0 1(a+jω)n+1\frac{1}{(a + j\omega)^{n+1}} -
0%