TABLE 9.1 PROPERTIES OF THE LAPLACE TRANSFORM
Section |
Property |
Signal |
Laplace Transform |
ROC |
|
|
x(t) |
X(s) |
R |
|
|
x1(t) |
X1(s) |
R1 |
|
|
x2(t) |
X2(s) |
R2 |
9.5.1 |
Linearity |
ax1(t)+bx2(t) |
aX1(s)+bX2(s) |
At least R1∩R2 |
9.5.2 |
Time shifting |
x(t−t0) |
e−st0X(s) |
R |
9.5.3 |
Shifting in the s-Domain |
es0tx(t) |
X(s−s0) |
Shifted version of R (i.e., s is in the ROC if s−s0 is in R) |
9.5.4 |
Time scaling |
x(at) |
$\frac{1}{ |
a |
9.5.5 |
Conjugation |
x∗(t) |
X∗(s∗) |
R |
9.5.6 |
Convolution |
x1(t)∗x2(t) |
X1(s)X2(s) |
At least R1∩R2 |
9.5.7 |
Differentiation in the Time Domain |
dtdx(t) |
sX(s) |
At least R |
9.5.8 |
Differentiation in the s-Domain |
−tx(t) |
dsdX(s) |
R |
9.5.9 |
Integration in the Time Domain |
∫−∞tx(τ)dτ |
s1X(s) |
At least R∩{Re[s]>0} |
9.5.10 Initial- and Final-Value Theorems
Initial-Value Theorem (初值定理)
If x(t)=0 for t<0 and x(t) contains no impulses or higher-order singularities at t=0, then
x(0+)=s→∞limsX(s)
Final-Value Theorem (终值定理)
If x(t)=0 for t<0 and x(t) has a finite limit as t→∞, then
t→∞limx(t)=s→0limsX(s)
Table 9.2 常用拉普拉斯变换对
序号 |
信号 f(t) |
Laplace变换 F(s) |
收敛域 ROC |
1 |
δ(t) |
1 |
All s |
2 |
u(t) |
s1 |
Re{s}>0 |
3 |
−u(−t) |
s1 |
Re{s}<0 |
4 |
(n−1)!tn−1u(t) |
sn1 |
Re{s}>0 |
5 |
−(n−1)!tn−1u(−t) |
sn1 |
Re{s}<0 |
6 |
e−αtu(t) |
s+α1 |
Re{s}>−α |
7 |
−e−αtu(−t) |
s+α1 |
Re{s}<−α |
8 |
(n−1)!tn−1e−αtu(t) |
(s+α)n1 |
Re{s}>−α |
9 |
−(n−1)!tn−1e−αtu(−t) |
(s+α)n1 |
Re{s}<−α |
10 |
δ(t−T) |
e−sT |
All s |
11 |
[cosω0t]u(t) |
s2+ω02s |
Re{s}>0 |
12 |
[sinω0t]u(t) |
s2+ω02ω0 |
Re{s}>0 |
13 |
[e−αtcosω0t]u(t) |
(s+α)2+ω02s+α |
Re{s}>−α |
14 |
[e−αtsinω0t]u(t) |
(s+α)2+ω02ω0 |
Re{s}>−α |
15 |
dtndnδ(t) |
sn |
All s |
16 |
u−n(t)=n timesu(t)∗⋯∗u(t) |
sn1 |
Re{s}>0 |
单边Laplace变换对
性质 |
信号 |
单边Laplace变换 |
基本定义 |
x(t) |
X(s) |
|
x1(t) |
X1(s) |
|
x2(t) |
X2(s) |
线性性 |
ax1(t)+bx2(t) |
aX1(s)+bX2(s) |
s域移位 |
es0tx(t) |
X(s−s0) |
时间尺度变换 |
x(at), a>0 |
a1X(as) |
共轭 |
x∗(t) |
X∗(s∗) |
卷积 |
x1(t)∗x2(t) |
X1(s)X2(s) |
(假设x1(t)和x2(t)在t<0时恒为零) |
|
|
时域微分 |
dtdx(t) |
sX(s)−x(0−) |
s域微分 |
−tx(t) |
dsdX(s) |
时域积分 |
∫0tx(τ)dτ |
s1X(s) |
L[f(n)(t)]=snX(s)−[f(n−1)(0)+⋯+sn−1f(0)]
X(n)(p)=L[(−t)nf(t)]