Laplace Transform Table

TABLE 9.1 PROPERTIES OF THE LAPLACE TRANSFORM

Section Property Signal Laplace Transform ROC
x(t)x(t) X(s)X(s) RR
x1(t)x_1(t) X1(s)X_1(s) R1R_1
x2(t)x_2(t) X2(s)X_2(s) R2R_2
9.5.1 Linearity ax1(t)+bx2(t)ax_1(t) + bx_2(t) aX1(s)+bX2(s)aX_1(s) + bX_2(s) At least R1R2R_1 \cap R_2
9.5.2 Time shifting x(tt0)x(t - t_0) est0X(s)e^{-st_0}X(s) RR
9.5.3 Shifting in the s-Domain es0tx(t)e^{s_0t}x(t) X(ss0)X(s - s_0) Shifted version of RR (i.e., ss is in the ROC if ss0s - s_0 is in RR)
9.5.4 Time scaling x(at)x(at) $\frac{1}{ a
9.5.5 Conjugation x(t)x^*(t) X(s)X^*(s^*) RR
9.5.6 Convolution x1(t)x2(t)x_1(t) * x_2(t) X1(s)X2(s)X_1(s)X_2(s) At least R1R2R_1 \cap R_2
9.5.7 Differentiation in the Time Domain ddtx(t)\frac{d}{dt}x(t) sX(s)sX(s) At least RR
9.5.8 Differentiation in the s-Domain tx(t)-tx(t) ddsX(s)\frac{d}{ds}X(s) RR
9.5.9 Integration in the Time Domain tx(τ)dτ\int_{-\infty}^t x(\tau)d\tau 1sX(s)\frac{1}{s}X(s) At least R{Re[s]>0}R \cap \{\text{Re}[s] > 0\}

9.5.10 Initial- and Final-Value Theorems

Initial-Value Theorem (初值定理)

If x(t)=0x(t) = 0 for t<0t < 0 and x(t)x(t) contains no impulses or higher-order singularities at t=0t = 0, then

x(0+)=limssX(s)x(0^+) = \lim_{s \to \infty} sX(s)

Final-Value Theorem (终值定理)

If x(t)=0x(t) = 0 for t<0t < 0 and x(t)x(t) has a finite limit as tt \to \infty, then

limtx(t)=lims0sX(s)\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)

Table 9.2 常用拉普拉斯变换对

序号 信号 f(t)f(t) Laplace变换 F(s)F(s) 收敛域 ROC
1 δ(t)\delta(t) 11 All ss
2 u(t)u(t) 1s\frac{1}{s} Re{s}>0\text{Re}\{s\} > 0
3 u(t)-u(-t) 1s\frac{1}{s} Re{s}<0\text{Re}\{s\} < 0
4 tn1(n1)!u(t)\frac{t^{n-1}}{(n-1)!}u(t) 1sn\frac{1}{s^n} Re{s}>0\text{Re}\{s\} > 0
5 tn1(n1)!u(t)-\frac{t^{n-1}}{(n-1)!}u(-t) 1sn\frac{1}{s^n} Re{s}<0\text{Re}\{s\} < 0
6 eαtu(t)e^{-\alpha t}u(t) 1s+α\frac{1}{s+\alpha} Re{s}>α\text{Re}\{s\} > -\alpha
7 eαtu(t)-e^{-\alpha t}u(-t) 1s+α\frac{1}{s+\alpha} Re{s}<α\text{Re}\{s\} < -\alpha
8 tn1(n1)!eαtu(t)\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) 1(s+α)n\frac{1}{(s+\alpha)^n} Re{s}>α\text{Re}\{s\} > -\alpha
9 tn1(n1)!eαtu(t)-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) 1(s+α)n\frac{1}{(s+\alpha)^n} Re{s}<α\text{Re}\{s\} < -\alpha
10 δ(tT)\delta(t-T) esTe^{-sT} All ss
11 [cosω0t]u(t)[\cos \omega_0 t]u(t) ss2+ω02\frac{s}{s^2+\omega_0^2} Re{s}>0\text{Re}\{s\} > 0
12 [sinω0t]u(t)[\sin \omega_0 t]u(t) ω0s2+ω02\frac{\omega_0}{s^2+\omega_0^2} Re{s}>0\text{Re}\{s\} > 0
13 [eαtcosω0t]u(t)[e^{-\alpha t} \cos \omega_0 t]u(t) s+α(s+α)2+ω02\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2} Re{s}>α\text{Re}\{s\} > -\alpha
14 [eαtsinω0t]u(t)[e^{-\alpha t} \sin \omega_0 t]u(t) ω0(s+α)2+ω02\frac{\omega_0}{(s+\alpha)^2+\omega_0^2} Re{s}>α\text{Re}\{s\} > -\alpha
15 dnδ(t)dtn\frac{d^n \delta(t)}{dt^n} sns^n All ss
16 un(t)=u(t)u(t)n timesu_{-n}(t) = \underbrace{u(t) * \cdots * u(t)}_{n \text{ times}} 1sn\frac{1}{s^n} Re{s}>0\text{Re}\{s\} > 0

单边Laplace变换对

性质 信号 单边Laplace变换
基本定义 x(t)x(t) X(s)\mathcal{X}(s)
x1(t)x_1(t) X1(s)\mathcal{X}_1(s)
x2(t)x_2(t) X2(s)\mathcal{X}_2(s)
线性性 ax1(t)+bx2(t)ax_1(t) + bx_2(t) aX1(s)+bX2(s)a\mathcal{X}_1(s) + b\mathcal{X}_2(s)
ss域移位 es0tx(t)e^{s_0 t}x(t) X(ss0)\mathcal{X}(s - s_0)
时间尺度变换 x(at)x(at), a>0a > 0 1aX(sa)\frac{1}{a}\mathcal{X}\left(\frac{s}{a}\right)
共轭 x(t)x^*(t) X(s)\mathcal{X}^*(s^*)
卷积 x1(t)x2(t)x_1(t) * x_2(t) X1(s)X2(s)\mathcal{X}_1(s)\mathcal{X}_2(s)
(假设x1(t)x_1(t)x2(t)x_2(t)t<0t < 0时恒为零)
时域微分 ddtx(t)\frac{d}{dt}x(t) sX(s)x(0)s\mathcal{X}(s) - x(0^-)
ss域微分 tx(t)-tx(t) ddsX(s)\frac{d}{ds}\mathcal{X}(s)
时域积分 0tx(τ)dτ\int_0^t x(\tau)d\tau 1sX(s)\frac{1}{s}\mathcal{X}(s)

L[f(n)(t)]=snX(s)[f(n1)(0)++sn1f(0)]\mathcal{L} [f^{(n)}(t)] = s^n \mathcal{X}(s) - \left[f^{(n-1)}(0) + \cdots + s^{n-1} f(0)\right]

X(n)(p)=L[(t)nf(t)]\mathcal{X}^{(n)}(p) = \mathcal{L}\left[(-t)^n f(t)\right]

0%